
Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

Augmenting Stream Constraint Programming
with Eventuality Conditions

Jasper C.H. Lee 1 Jimmy H.M. Lee 2 Allen Z. Zhong 2

1Department of Computer Science
Brown University, Providence, RI 02912, USA

2Department of Computer Science and Engineering
The Chinese University of Hong Kong, Shatin, N.T., Hong Kong

CP 2018, Lille, France

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

Introduction: Infinite Streams

Streams – infinite sequence over discrete time points

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

Introduction: Infinite Streams

Difficult to model streams in finite domain CSPs

Example

Want: equality between streams

t = 0 t = 1 t = 2 t = 3 t = 4 · · ·
x0 x1 x2 x3 x4 · · ·
y0 y1 y2 y3 y4 · · ·

Need: ∀t ≥ 0, xt == yt

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

Introduction: Stream CSPs

Siu et al. [IJCAI’11] and Lee and Lee [CP’14]: proposed
framework, solving algorithm, and applications

Real-time PID Controllers

Sequential Planning Problems

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

Introduction: Stream CSPs

Stream Constraint Satisfaction

Constraint programming on a new data type—streams

Inherit all the benefits of declarative programming
languages

Readability

Conciseness

Compositionality

Referential transparency

A natural CP formalism for modelling planning problems

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

Introduction: Stream CSPs

Stream Constraint Satisfaction

Constraint programming on a new data type—streams

Inherit all the benefits of declarative programming
languages

Readability

Conciseness

Compositionality

Referential transparency

A natural CP formalism for modelling planning problems

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

Introduction: Research Issues

Sequential planning [CP’14]

0

1

2

3

4

0 1 2 3 4 x

y

Finite horizon, say, 12 steps

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

Introduction: Research Issues

Sequential planning [CP’14]

0

1

2

3

4

0 1 2 3 4 x

y

first next · · · next goal == 1

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

Introduction: Research Issues

Sequential planning [CP’14]

0

1

2

3

4

0 1 2 3 4 x

y

first next · · · next goal == 1

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

Introduction: Research Issues

Sequential planning [CP’14]

0

1

2

3

4

0 1 2 3 4 x

y

“Eventually” achieving the goal?

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

Introduction: Research Issues

Sequential planning [CP’14]

0

1

2

3

4

0 1 2 3 4 x

y

Achieving the goal within 12 steps?

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

Our Contributions

Two constructs for planning scenarios:

the “Until” constraint for “eventuality” conditions

an efficient syntactic sugar, @ operator, for conditions
with hard deadline

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

Background: Infinite Streams

Streams: function N0 → Σ (finite alphabet)

Example

a = 〈2, 3, 7, 2, 9, 4, 6, 5, . . .〉

0 1 2 3 4 5 6 7

2 3 7 2 9 4 6 5 . . .

. . .Time

Stream variables: unknown streams

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

Background: Infinite Streams

Operators

Pointwise: {+, -, *, /, %, and, or, if-then-else, . . .}.

Temporal: {, , }.

Example

〈2, 3, 4, 1, . . . 〉 〈 2 3 4 1 . . . 〉
+ ≡ + + + + . . .

〈3, 1, 1, 5, . . . 〉 〈 3 1 1 5 . . . 〉
〈 5 4 5 6 . . . 〉

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

Background: Infinite Streams

Operators

Pointwise: {+, -, *, /, %, and, or, if-then-else, . . .}.
Temporal: {first, next, fby}.

Example

First (first)
first 〈1, 2, 3, 4, . . .〉 = 〈1, 1, 1, 1, . . .〉
Next (next)
next 〈1, 2, 3, 4, . . .〉 = 〈2, 3, 4, . . .〉

first next 〈1, 2, 3, 4, . . .〉 = 〈2, 2, 2, 2, . . .〉

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

Background: Infinite Streams

Operators

Pointwise: {+, -, *, /, %, and, or, if-then-else, . . .}.
Temporal: {first, next, fby}.

Example

First (first)
first 〈1, 2, 3, 4, . . .〉 = 〈1, 1, 1, 1, . . .〉
Next (next)
next 〈1, 2, 3, 4, . . .〉 = 〈2, 3, 4, . . .〉
first next 〈1, 2, 3, 4, . . .〉 = 〈2, 2, 2, 2, . . .〉

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

Background: Stream Constraints

(Pointwise) Stream constraints: relations between streams,
e.g. pointwise arithmetic comparison {<, <=, ==, !=, >=, >}

Example

constraint first A + next B > C satisfied!

A = 〈1, 2, 4, 3, 2, 6, 4, 2, . . . 〉
B = 〈3, 5, 1, 4, 1, 1, 3, 2, . . . 〉

first A + next B = 〈6, 2, 5, 2, 2, 4, 3, . . .〉
C = 〈1, 1, 4, 1, 0, 3, 1, . . .〉

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

Background: Stream Constraints

(Pointwise) Stream constraints: relations between streams,
e.g. pointwise arithmetic comparison {<, <=, ==, !=, >=, >}

Example

constraint first A + next B > C not satisfied!

A = 〈1, 2, 1, 3, 2, 6, 4, 2, . . .〉
B = 〈3, 5, 1, 4, 1, 1, 3, 2, . . .〉

first A + next B = 〈6, 2, 5, 2, 2, 4, 3, . . .〉
C = 〈1, 1, 6, 1, 1, 1, 1, . . .〉

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

Background: Stream CSPs

A Stream Constraint Satisfaction Problem (St-CSP) P = (X ,D,C )

X : a set of stream variables/unknowns

D: a function mapping each variable to its domain, which is
the set of all streams with the variable’s alphabet

C : a set of stream constraints to restrict combination of
stream values that the variables can take

A solution to the St-CSP P is a consistent variable assignment to
all variables to that all constraints are satisfied simultaneously

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

Background: Stream CSPs

Sol(P): deterministic ω-regular language

Representation: deterministic Büchi automaton A

S0start S1 S2

(0, 1)

(1, 1)

(1, 0)

(0, 0)

(0, 1)

(1, 0)

Run: S0
(1,1)−−−→ S0

(0,1)−−−→ S1
(0,1)−−−→ S2

(1,0)−−−→ . . .

Solution streams: 〈1, 0, 0, 1, . . . 〉 and 〈1, 1, 1, 0, . . . 〉

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

Example St-CSP

Not readNot read

Not read

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

Example St-CSP

Not readNot read

Reading...

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

Example St-CSP

Not readReading...

Done

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

Example St-CSP

Reading...Done

Done

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

Example St-CSP

DoneDone

Done

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

Example St-CSP

giveTo : [0, 2]; read0, read1, read2, goal : [0, 1];

For each i ,

first readi == 0;

next readi == readi or (giveTo eq i);

goal == (read0 and read1 and read2);

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

Example St-CSP

giveTo : [0, 2]; read0, read1, read2, goal : [0, 1];

For each i ,

first readi == 0;

next readi == readi or (giveTo eq i);

goal == (read0 and read1 and read2);

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

Eventuality Condition

Guarantee eventual success without imposing finite
horizon?

No, all constraints are inherently pointwise

Formal proof (not in paper): straightforward adaptation of the
finite automata pumping lemma

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

Eventuality Condition

Guarantee eventual success without imposing finite
horizon?

No, all constraints are inherently pointwise

Formal proof (not in paper): straightforward adaptation of the
finite automata pumping lemma

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

The “Until” Constraint

Definition (a until b)

∃t ≥ 0, s.t.

∃t ≥ 0, s.t.

∀j < t, a(j) 6= 0

Time

b

a

0 1 2 . . . t − 1 t + 1 t + 2 . . .t

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

The “Until” Constraint

Definition (a until b)

∃t ≥ 0, s.t.

b(t) 6= 0 (eventually)

∀j < t, a(j) 6= 0

Time

b

a

0 1 2 . . . t − 1 t + 1 t + 2 . . .

1

t

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

The “Until” Constraint

Definition (a until b)

∃t ≥ 0, s.t.

b(t) 6= 0 (eventually)

∀j < t, a(j) 6= 0

Time

b

a

0 1 2 . . . t − 1 t + 1 t + 2 . . .

1

t

b 0 0 0 . . . 0

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

The “Until” Constraint

Definition (a until b)

∃t ≥ 0, s.t.

b(t) 6= 0 (eventually)

∀j < t, a(j) 6= 0

∀j < t, a(j) 6= 0

Time

b

a

0 1 2 . . . t − 1 t + 1 t + 2 . . .

1

t

a 1 2 1 . . . 3

b 0 0 0 . . . 0

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

The “Until” Constraint

Definition (a until b)

∃t ≥ 0, s.t.

b(t) 6= 0 (eventually)

∀j < t, a(j) 6= 0

Time

b

a

0 1 2 . . . t − 1 t + 1 t + 2 . . .

1

t

a 1 2 1 . . . 3 0 0 1 . . .

b 0 0 0 . . . 0 2 0 . . .

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

The “Until” Constraint

giveTo : [0, 2]; read0, read1, read2, goal : [0, 1];

For each i ,

first readi == 0;

next readi == readi or (giveTo eq i);

goal == (read0 and · · · and read2);

1 until (goal eq 1);

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

The @ Operator: Problem

How did we enforce that the circulation finishes within 10
steps?

“first next · · · next︸ ︷︷ ︸
10 next operators

goal == 1”

It is cumbersome and time inefficient

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

The @ Operator: Problem

How did we enforce that the circulation finishes within 10
steps?

“first next · · · next︸ ︷︷ ︸
10 next operators

goal == 1”

It is cumbersome and time inefficient

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

The @ Operator: Problem

How did we enforce that the circulation finishes within 10
steps?

“first next · · · next︸ ︷︷ ︸
10 next operators

goal == 1”

It is cumbersome and time inefficient

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

The @ Operator

Definition (x@t)

∀i ≥ 0, (x@t)(i) = x(t)

Time 0 1 2 . . . t − 1 t t + 1 . . .

x : 2 3 7 . . . 9 4 6 . . .

x@t : 4 4 4 . . . 4 4 4 . . .

Equivalent form: “first next · · · next︸ ︷︷ ︸
t next operators

x”

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

The @ Operator

Definition (x@t)

∀i ≥ 0, (x@t)(i) = x(t)

Time 0 1 2 . . . t − 1 t t + 1 . . .

x : 2 3 7 . . . 9 4 6 . . .

x@t : 4 4 4 . . . 4 4 4 . . .

Equivalent form: “first next · · · next︸ ︷︷ ︸
t next operators

x”

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

The @ Operator

Definition (x@t)

∀i ≥ 0, (x@t)(i) = x(t)

Time 0 1 2 . . . t − 1 t t + 1 . . .

x : 2 3 7 . . . 9 4 6 . . .

x@t : 4 4 4 . . . 4 4 4 . . .

Equivalent form: “first next · · · next︸ ︷︷ ︸
t next operators

x”

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

The @ Operator

giveTo : [0, 3]; read0, . . . , read2, goal : [0, 1];

For each i ,

first readi == 0;

next readi == readi or (giveTo eq i);

goal == (read0 and · · · and read2);

goal @10 == 1;

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

Experiments

0

1

2

3

4

0 1 2 3 4 x

y

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

Experiments: Path Planning

Experiment settings:

n × n grid world

directed edges (probability p)

50 random instances

timeout: 600 seconds
0

1

2

3

4

0 1 2 3 4 x

y

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

Experiments: Path Planning

Q1: Is there a plan for the robot to reach the goal eventually?

St-CSP: 1 until (goal eq 1)

Finite domain CSP (single solution): increasing horizon using
Gecode v6.0.0

Finite domain CSP (single solution): fix max length n2

Memory issue at n = 40, exceeding 256G (O(n2) variables)
Many instances already timed out at n = 10

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

Experiments: Path Planning

Q1: Is there a plan for the robot to reach the goal eventually?

St-CSP: 1 until (goal eq 1)

Finite domain CSP (single solution): increasing horizon using
Gecode v6.0.0

Finite domain CSP (single solution): fix max length n2

Memory issue at n = 40, exceeding 256G (O(n2) variables)
Many instances already timed out at n = 10

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

Experiments: Path Planning

St-CSP with “until” (Solid)

Finite domain CSP, increasing horizon (Dashed)

20 40 60

0

200

400

600

n

S
ol

vi
n

g
ti

m
e

(s
)

p = 0.3

p = 0.4

p = 0.5

p = 0.6

p = 0.7

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

Experiments: Path Planning

Q2: Is there a plan for the robot to reach the goal within t steps?

St-CSP: first next · · · next︸ ︷︷ ︸
t next operators

goal == 1

St-CSP: goal @ t == 1

Finite domain CSP using Gecode v6.0.0 (single solution)

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

Experiments: Path Planning

St-CSP: first next (dashed) vs @ (solid)
p = 0.8

10 20 30 40 50

0

200

400

600

t

n = 5

n = 10

n = 15

n = 20

n = 25

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

Experiments: Path Planning

Finite domain CSP (dashed) vs St-CSP with @ (solid)
p = 0.8

10 20 30 40 50

0

200

400

600

t

n = 5

n = 10

n = 15

n = 20

n = 25

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

Concluding Remarks

Enhanced the expressiveness of St-CSP framework

The Until constraint: eventuality condition

The @ operator: improved modelling and efficiency for goal
condition with explicit deadline

Natural formalism: no need for increasing horizon

Towards a bridge between CP and Planning

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

Concluding Remarks

Enhanced the expressiveness of St-CSP framework

The Until constraint: eventuality condition

The @ operator: improved modelling and efficiency for goal
condition with explicit deadline

Natural formalism: no need for increasing horizon

Towards a bridge between CP and Planning

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

Concluding Remarks

Enhanced the expressiveness of St-CSP framework

The Until constraint: eventuality condition

The @ operator: improved modelling and efficiency for goal
condition with explicit deadline

Natural formalism: no need for increasing horizon

Towards a bridge between CP and Planning

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

Future Work

Solving algorithm for single solution

Generalize x@t so that t can be a variable

Stream constraint optimization

Correspondence between St-CSP and Planning

Adversarial planning (safety+reachability games)

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

Thank you!!

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

Conclusion: Missionaries and Cannibals

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

Conclusion: Missionaries and Cannibals

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

Conclusion: Missionaries and Cannibals

Mleft ,Mright ,Cleft ,Cright : [0, 3]; boat, goal : [0, 1];

// initial conditions
first Mleft == 3; first Cleft == 3;
first Mright == 0; first Cright == 0;
first boat == 0;

// finish the game when everyone is on the other bank
goal == Mright eq 3 and Cright eq 3;

// stop moving people once the goal is achieved
goal -> (next Mleft) eq Mleft ;

goal -> (next Cleft) eq Cleft ;

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

Conclusion: Missionaries and Cannibals

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

Conclusion: Missionaries and Cannibals

Mleft ,Mright ,Cleft ,Cright : [0, 3]; boat, goal : [0, 1];

// on each bank, cannibals cannot outnumber missonaries
Cleft <= if Mleft eq 0 then 3 else Mleft ;
Cright <= if Mright eq 0 then 3 else Mright ;

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

Conclusion: Missionaries and Cannibals

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

Conclusion: Missionaries and Cannibals

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

Conclusion: Missionaries and Cannibals

Mleft ,Mright ,Cleft ,Cright : [0, 3]; boat, goal : [0, 1];

// The boat needs at least 1 person until we finish the game
abs(Mleft - next Mleft) + abs(Cleft - next Cleft) >= not(goal);

// The boat has capacity 2
abs(Mleft - next Mleft) + abs(Cleft - next Cleft) <= 2;

// The direction of the boat always alternates until we finish the game

next boat == if goal then boat else not(boat);

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

Conclusion: Missionaries and Cannibals

Mleft ,Mright ,Cleft ,Cright : [0, 3]; boat, goal : [0, 1];

// Axiom 1: Conservation of mass
Mleft + Mright == 3;
Cleft + Cright == 3;

// Axiom 2: The direction of the boat determines the moves of mass
boat eq 1 -> (Mleft - next Mleft) le 0;
boat eq 1 -> (Cleft - next Cleft) le 0;
boat eq 0 -> (Mleft - next Mleft) ge 0;

boat eq 0 -> (Cleft - next Cleft) ge 0;

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

Conclusion: Path Planning

The robot wants to reach the goal starting from some point.

0

1

2

3

4

0 1 2 3 4 x

y

x , y : [0, 4]; goal : [0, 1]

first x == 0;
first y == 0;
first goal == 0;

next goal == (x eq 4 and y eq 3) or goal ;

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

Conclusion: Path Planning

The robot can move around if there are no blocking walls or
doors.

0

1

2

3

4

0 1 2 3 4 x

y

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

Conclusion: Path Planning

The door is 1-way!

The maze forms a directed graph.

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

Conclusion: Path Planning

The door is 1-way!

The maze forms a directed graph.

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

Conclusion: Path Planning

The robot is in cell (i , j) if it stays there from the last time point
or moves from any of (iE , jE ), (iS , jS), (iW , jW ) or (iN , jN).

(i , j)

(iW , jW ) (iE , jE )

(iN , jN)

(iS , jS)

((next x eq i) and (next y eq j)) -> (x eq i and y eq j)

or (x eq iE and y eq jE ) or · · · or (x eq iN and y eq jN);

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

Conclusion: Path Planning

The robot is in cell (1, 0) if it stays there from the last time point
or moves from (0, 0).

0

1

2

3

4

0 1 2 3 4 x

y

((next x eq 1) and (next y eq 0)) -> (x eq 1 and y eq 0)

or (x eq 0 and y eq 0);

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

Conclusion: Path Planning

The robot is in cell (1, 1) if it stays there from the last time point
or moves from (1, 0) or (2, 1).

0

1

2

3

4

0 1 2 3 4 x

y

((next x eq 1) and (next y eq 1)) -> (x eq 1 and y eq 1)

or (x eq 1 and y eq 0) or (x eq 2 and y eq 1);

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

Conclusion: Path Planning

The robot stops moving once reaching the goal.

0

1

2

3

4

0 1 2 3 4 x

y

goal -> ((x eq next x) and (y eq next y));

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

Experiments: Missionaries and Cannibals

Q1: Is there a safe plan that eventually moves everyone over?

Settings

n = 40− 240: number of missionaries/cannibals
b = 4− 8: capacity of boat
600 seconds timeout

St-CSP: 1 until (goal eq 1)

Finite domain CSP (single solution): increasing horizon
(Gecode v6.0.0)

in all tested instances.

Finite domain CSP (single solution): fix max length n(b + 1)

All solved within 15 seconds but . . .

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

Experiments: Missionaries and Cannibals

Q1: Is there a safe plan that eventually moves everyone over?

Settings

n = 40− 240: number of missionaries/cannibals
b = 4− 8: capacity of boat
600 seconds timeout

St-CSP: 1 until (goal eq 1)

Finite domain CSP (single solution): increasing horizon
(Gecode v6.0.0)

Timed out in all tested instances.

Finite domain CSP (single solution): fix max length n(b + 1)

All solved within 15 seconds but . . .

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

Experiments: Missionaries and Cannibals

Q1: Is there a safe plan that eventually moves everyone over?

Settings

n = 40− 240: number of missionaries/cannibals
b = 4− 8: capacity of boat
600 seconds timeout

St-CSP: 1 until (goal eq 1)

Finite domain CSP (single solution): increasing horizon
(Gecode v6.0.0)

Timed out in all tested instances.

Finite domain CSP (single solution): fix max length n(b + 1)

All solved within 15 seconds but . . .

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

Experiments: Missionaries and Cannibals

Q1: Is there a safe plan that eventually moves everyone over?

Settings

n = 40− 240: number of missionaries/cannibals
b = 4− 8: capacity of boat
600 seconds timeout

St-CSP: 1 until (goal eq 1)

b = 4 b = 5 b = 6 b = 7 b = 8

n = 40 1.456 1.939 2.307 2.537 2.959

n = 80 9.979 13.45 17.324 21.356 26.229

n = 120 33.56 44.782 59.113 73.335 91.351

n = 160 76.532 105.341 139.212 175.149 219.134

n = 200 150.137 207.466 274.537 348.243 436.469

n = 240 259.773 360.413 474.005 – –

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

Experiments: Missionaries and Cannibals

Q2: Is there a safe plan that moves everyone over within t steps?

St-CSP: goal @ t == 1 vs first next · · · next︸ ︷︷ ︸
t next operators

goal

(n, b) t = 10 t = 40 t = 70 t = 100

(20, 5) 0.64/49.68 4.04/– 9.21/– 14.84/–

(30, 6) 1.71/178.68 16.33/– 36.23/– 56.76/–

(40, 7) 4.01/454.98 38.55/– 95.19/– 152.79/–

(50, 8) 9.07/– 100.34/– 236.58/– 374.07/–

(60, 9) 17.31/– 183.89/– 461.51/– –/–

(70, 10) 32.25/– 371.57/– –/– –/–

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

Experiments: Missionaries and Cannibals

Q2: Is there a safe plan that moves everyone over within t steps?

Finite domain CSP using Gecode v6.0.0 (single solution)

but
most timed out when searching for all solutions . . .

(n, b) t = 10 t = 40 t = 70 t = 100

(20, 5) 0.663 0.435 0.562 1.075

(30, 6) 0.435 0.560 0.780 1.011

(40, 7) 0.562 0.519 0.799 1.139

(50, 8) 0.762 0.521 0.767 1.102

(60, 9) 1.002 0.501 0.835 0.975

(70, 10) 1.425 0.526 0.873 0.1109

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

Experiments: Missionaries and Cannibals

Q2: Is there a safe plan that moves everyone over within t steps?

Finite domain CSP using Gecode v6.0.0 (single solution) but
most timed out when searching for all solutions . . .

(n, b) t = 10 t = 40 t = 70 t = 100

(20, 5) 0.663 0.435 0.562 1.075

(30, 6) 0.435 0.560 0.780 1.011

(40, 7) 0.562 0.519 0.799 1.139

(50, 8) 0.762 0.521 0.767 1.102

(60, 9) 1.002 0.501 0.835 0.975

(70, 10) 1.425 0.526 0.873 0.1109

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

Appendix: Solving Algorithm

High level approach of Lee and Lee [CP’14]:

St-CSP
Normalise−−−−−−→ Normalised St-CSP

Solve−−−→ Büchi Automaton

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

Appendix: Solving Algorithm

St-CSP
Normalise−−−−−−→ Normalised St-CSP

Solve−−−→ Büchi Automaton

Primitive next constraints: xi == next xj

Primitive pointwise constraints with no next or fby (but can
contain first operators)

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

Appendix: Solving Algorithm

St-CSP
Normalise−−−−−−→ Normalised St-CSP

Solve−−−→ Büchi Automaton

Primitive next constraints: xi == next xj

Primitive pointwise constraints with no next, fby or until (but
can contain first operators)

Primitive until constraints: xi until xj

Primitive @ constraints: xi == xj @t, where t ≥ 1

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

Appendix: Solving Algorithm

High level approach of Lee and Lee [CP’14]:

St-CSP
Normalise−−−−−−→ Normalised St-CSP

Solve−−−→ Büchi Automaton

depth first search

stream: infinite size

variables cannot be instantiated with stream values completely
instantiating the values in the order of time point

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

Appendix: Solving Algorithm

High level approach of Lee and Lee [CP’14]:

St-CSP
Normalise−−−−−−→ Normalised St-CSP

Solve−−−→ Büchi Automaton

Solving xi until xj :

If xj 6= 1, add “xi until xj” in the new constraint set

If xi = 1, do not add “xi until xj” in the new constraint set

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions



Introduction Background The “Until” Constraint The @ Operator Experiments Conclusion

Appendix: Solving Algorithm

High level approach of Lee and Lee [CP’14]:

St-CSP
Normalise−−−−−−→ Normalised St-CSP

Solve−−−→ Büchi Automaton

Solving xi == xj @ t:

If t > 1, then we include “xi == xj @ (t − 1) in the new
constraint set

If t = 1, then we include “xi == first xj in the new
constraint set

Jasper C.H. Lee · Jimmy H.M. Lee · Allen Z. Zhong

St-CSP with Eventuality Conditions


	Introduction
	Background
	The ``Until" Constraint
	cp2018-1.cpt
	Experiments
	Conclusion

