
Towards More Practical and Efficient Automatic Dominance Breaking

Jimmy H.M. Lee and Allen Z. Zhong1

1 Department of Computer Science and Engineering
The Chinese University of Hong Kong

Shatin, N.T., Hong Kong
{jlee, zwzhong}@cse.cuhk.edu.hk

Abstract

Dominance breaking is shown to be an effective technique to
improve the solving speed of Constraint Optimization Prob-
lems (COPs). The paper proposes separate techniques to gen-
eralize and make more efficient the nogood generation phase
of an automated dominance breaking framework by Lee and
Zhong’s. The first contribution is in giving conditions that al-
low skipping the checking of non-efficiently checkable con-
straints and yet still produce sufficient useful nogoods, thus
opening up possibilities to apply the technique on COPs that
were previously impractical. The second contribution iden-
tifies and avoids the generation of dominance breaking no-
goods that are both logically and propagation redundant. The
nogood generation model is strengthened using the notion
of Common Assignment Elimination to avoid generation of
nogoods that are subsumed by other nogoods, thus reduc-
ing the search space substantially. Extensive experimentation
confirms the benefits of the new proposals.

Introduction
Dominance relations in Constraint Optimization Problems
(COPs) describe relations between two full assignments
where one is known to be subordinate compared with an-
other with respect to satisfiability and/or objective value.
Such relations, if and when discovered, can be used to
speed up the Branch and Bound solving process by reduc-
ing the search space significantly. A wealth of research in-
vestigates the exploitation of dominance relations in COPs,
most of which focuses on problem-specific dominance rela-
tions and usually requires sophisticated insights of the prob-
lem structure (Getoor et al. 1997; Aldowaisan 2001; Korf
2004; Prestwich and Beck 2004; Monette et al. 2007). Chu
and Stuckey (2012) presents a generic method for identify-
ing and exploiting dominance relations, and it is automated
to a large extent by Mears and Garcia de la Banda (2015)
which still calls for human interventions in the selection of
symmetries to generate effective dominance breaking con-
straints.

Lee and Zhong (2020) give the theories and techniques
that allow the mechanical construction of a CSP model to
generate dominance breaking nogoods for a useful class of
COPs, which can then be added to the problem model to

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

speed up solving. The framework is able to identify domi-
nance breaking nogoods that had not been discovered before
but are stronger than the manually constructed constraints.

In this paper, we extend the applicability of Lee and
Zhong’s work with two theoretical and practical innovations.
First, the original Lee and Zhong method requires all con-
straints to be efficiently checkable (EC) to guarantee the effi-
ciency of the nogood generation process. We prove formally
on when and how non-EC constraints can be ignored in no-
good generation by not exploring nogoods that contain vari-
ables in the non-EC constraints. This way, sufficient useful
nogoods can still be generated when the number of variables
in non-EC constraints are relatively small compared to all
variables of the problem. Second, we show that some gener-
ated nogoods make no contributions in pruning since they
are both logically and propagation redundant (Choi, Lee,
and Stuckey 2003) with respect to other nogoods. We pro-
pose Common Assignment Elimination to ban generation of
such fruitless nogoods, thus speeding up the generation pro-
cess substantially. Experimentation confirms the enhanced
applicability of our theory-backed methods, which allow us
to tackle benchmarks that could not be handled by the orig-
inal Lee and Zhong method.

Background
Constraint Satisfaction and Optimization
A Constraint Satisfaction Problem (CSP) P is a tuple
(X,D,C) consisting of a finite set of variables X =
{x1, . . . , xn}, a mappingD from variable x ∈ X to its finite
domain D(x) and a set of constraints C, where each con-
straint c ∈ C is a subset of the Cartesian product D(xi1) ×
· · · × D(xik) over the var(c) = {xi1 , . . . , xik} ⊆ X . A
Constraint Optimization Problem (COP) (X,D,C, f) ex-
tends a CSP with an objective function f .

An assignment x = v is an equational constraint which
assigns a value v ∈ D(x) to variable x ∈ X . A partial
assignment θ on variables X ′ is a set of assignments, one
for each variable in X ′ ⊂ X , i.e. θ = {xij = vij | xij ∈
X ′ ∧ ∀ij 6= ij′ , xij 6= xij′}, where the set X ′ = var(θ)
is the scope of θ. When the context is clear, we use θ to
denote the tuple (vi1 , . . . , vil), where ij < ij+1, xij ∈ X ′
and |X ′| = l. Note that a partial assignment can also be
interpreted as a conjunction of equational constraints, and a

nogood ¬θ is simply the negation of the conjunction for θ.
A full assignment is a partial assignment when X ′ = X ,

and we use θ̄ to emphasize that it is a full assignment. The
projection θ↓Y of θ onto Y ⊆ var(θ) is the partial assign-
ment {x = v | (x = v) ∈ θ ∧ x ∈ Y }. A full/partial
assignment θ satisfies a constraint c iff θ↓var(c)∈ c, where
var(c) ⊆ var(θ). A solution of a COP P = (X,D,C, f) is
a full assignment that satisfies all constraints in C. If the set
of all solutions sol(P) is non-empty, then P is satisfiable.

The objective function f maps every full assignment to a
real number. Without loss of generality, the goal of solving
a COP is to find an optimal solution θ̄opt such that θ̄opt is a
solution of P and f(θ̄opt) ≤ f(θ̄′) for any other solution θ̄′
of P . In other words, the objective function is minimized.

Dominance Relations
Let ΘP be the set of all full assignments of a COP P =
(X,D,C, f). A dominance relation ≺ over ΘP (Chu and
Stuckey 2012) is a transitive and irreflexive relation such that
for θ̄, θ̄′ ∈ ΘP , if θ̄ dominates θ̄′, i.e. θ̄ ≺ θ̄′, with respect
to P , then either: (1) θ̄ ∈ sol(P) and θ̄′ /∈ sol(P), or (2)
θ̄, θ̄′ ∈ sol(P) and f(θ̄) ≤ f(θ̄′), or (3) θ̄, θ̄′ /∈ sol(P)
and f(θ̄) ≤ f(θ̄′). Dominance relations can be generalized
to partial assignments. Let ΘP

θ = {θ̄ ∈ ΘP | θ̄ ⊇ θ}
be the subset of full assignments that satisfy θ. By abus-
ing notation, we say that a partial assignment θ dominates
another θ′, i.e. θ ≺ θ′, with respect to P if and only if
∀θ̄′ ∈ ΘP

θ′ ,∃θ̄ ∈ ΘP
θ such that θ̄ ≺ θ̄′ with respect to

P (Lee and Zhong 2020). The following theorem states that
if θ ≺ θ′ with respect to P , it is sound to prune all assign-
ments in ΘP

θ′ when searching for P ’s optimal solutions.

Theorem 1. (Lee and Zhong 2020) Suppose that θ and
θ′ are partial assignments of P = (X,D,C, f) such that
var(θ) = var(θ′). If θ ≺ θ′ with respect to P , then P has
the same satisfiability or optimal value as P ∪ ¬θ′.

Theorem 1 implies that if θ′ is dominated by some partial
assignment (θ), then P ∪ ¬θ′ and P have the same satisfia-
bility or optimal value. Furthermore, P ∪ ¬θ′ has a smaller
search space, and the constraint ¬θ′ is called a dominance
breaking constraint for P . Since it is in the form of nogood,
we also call it a dominance breaking nogood for P .

Automatic Dominance Breaking
Lee and Zhong (2020) show how to automate the identifica-
tion and exploitation of dominance relations as follows:

1. The objective and constraints of a COP P are analyzed
and a (dominance breaking nogood) generation problem
Pg as a CSP is constructed mechanically. Solutions of Pg
are not nogoods, but can be used to create nogoods.

2. All solutions of Pg are enumerated, and each solution cor-
responds to a pair of partial assignments (θ, θ′) such that
θ ≺ θ′ with respect to P .

3. The corresponding dominance breaking nogoods {¬θ′}
are collected and added to P before solving.

The key step for automation is to construct Pg mechani-
cally from P , and yet all solutions of Pg can be generated

efficiently. Note that the difficulty of an all-solution search
for a CSP depends only on the number of variables and the
respective domain size in Pg . Thus, having more constraints
in Pg would only speed up solving since there will be less
solutions and more pruning. In case Pg is unsatisfiable, it
only means that there are no dominance breaking nogoods.

By definition, one can directly check every full assign-
ment in ΘP

θ′ against all full assignments in ΘP
θ to establish

θ ≺ θ′, but it is impractical. To improve efficiency, Pg only
focuses on searching for (θ, θ′) such that var(θ) = var(θ′),
and a bijective mapping called mutation mapping µθ→θ

′
:

ΘP
θ → ΘP

θ′ is further introduced. A full assignment θ̄ ∈ ΘP
θ

is mapped to µθ→θ
′
(θ̄) such that µθ→θ

′
(θ̄) = (θ̄ \ θ) ∪ θ′.

Solutions of Pg will correspond to only pairs {(θ, θ′)} such
that θ̄ ≺ µθ→θ′(θ̄) with respect to P for every θ̄ ∈ ΘP

θ .

Example 1. Consider a simple COP P as follows:

minimize
3∑
i=1

ai · xi

subject to
3∑
i=1

bi · xi ≥ 3

xi ∈ {0, 1} for i = 1, 2, 3

where a = [1, 4, 2] and b = [3, 2, 1] are two arrays of in-
tegers. For two partial assignments θ = {x1 = 1} and
θ′ = {x1 = 0}, the sets ΘP

θ and ΘP
θ′ both contain 4 full

assignments. Given a full assignment θ̄ ∈ ΘP
θ , the mutation

mapping µθ→θ
′

: ΘP
θ → ΘP

θ′ transforms the θ component
of θ̄ to become θ̄′ = µθ→θ

′
(θ̄) ∈ ΘP

θ′ . We enumerate the
mapping in the following table:

θ̄ θ̄′

x1 x2 x3 x1 x2 x3
1 0 0 7→ 0 0 0
1 0 1 7→ 0 0 1
1 1 0 7→ 0 1 0
1 1 1 7→ 0 1 1

The transformed parts are highlighted in color.

Checking for θ̄ ≺ µθ→θ
′
(θ̄) with respect to P for every

θ̄ ∈ ΘP
θ is still expensive in general, and thus a sufficient

condition is given as follows.

Theorem 2. (Lee and Zhong 2020) Suppose that θ and θ′
are partial assignments of a COP P = (X,D,C, f) such
that var(θ) = var(θ′). If (θ, θ′) satisfies:

• empty intersection: ΘP
θ ∩ΘP

θ′ = ∅
• betterment: ∀θ̄ ∈ ΘP

θ , f(θ̄) ≤ f(µθ→θ
′
(θ̄))

• implied satisfaction: ∀θ̄ ∈ ΘP
θ , µθ→θ

′
(θ̄) ∈ sol(P) im-

plies θ̄ ∈ sol(P).

then θ ≺ θ′ with respect to P .

By Theorem 2, empty intersection, betterment and im-
plied satisfaction together form a sufficient condition, and
thus jointly they can prove that θ ≺ θ′ with respect to P .
Empty intersection is easy to check: if θ 6= θ′, then ΘP

θ ∩

ΘP
θ′ = ∅. However, checking betterment and implied satis-

faction requires comparing every θ̄ ∈ ΘP
θ against µθ→θ

′
(θ̄),

which is still costly in general. Lee and Zhong (2020) further
give sufficient conditions on (θ, θ′) for certain classes of ob-
jectives and constraints in P so that betterment and implied
satisfaction can be checked efficiently. We say that objective
and constraints with such sufficient conditions are efficiently
checkable (EC) and these sufficient conditions can be mod-
elled as constraints in Pg . As long as the objective and all
constraints of the COP P are EC, we can automatically con-
struct efficiently solvable Pg . We summarize the constraints
in Pg in the following definition.
Definition 1 (The Generation Problem). Each pair (θ, θ′)
of partial assignments resulting from solutions of the gen-
eration problem Pg should fulfil: (1) same scope: var(θ) =
var(θ′), (2) unequal pair: θ 6= θ′, (3) sufficient conditions
on (θ, θ′) for betterment arising from the objective of P , and
(4) sufficient conditions on (θ, θ′) for implied satisfaction
arising from the constraints of P .

Note that the above are high-level description of con-
straints in Pg . In practice, we usually limit the maximum
size |var(θ)| to be a fixed L, which is the length of the maxi-
mum length of generated dominance breaking nogoods. The
actual implementation uses three arrays of size at most L to
represent the indices of variables and the assigned values in
θ and θ′ respectively (Lee and Zhong 2020).
Example 2. Consider searching for pairs (θ, θ′) such that
θ ≺ θ′ with respect to the COP P in Example 1. The
problem P has a linear objective function and a linear in-
equality constraint. Let

∑
i aixi be a linear expression, and

(
∑
i aixi)θ be the expression by replacing every occurrence

of variable xi by value vi for all assignment (xi = vi) ∈ θ.
Following Lee and Zhong (2020), the sufficient conditions
are as follows:
• Sufficient conditions for betterment:

3∑
i=1

(ai · xi)θ <
3∑
i=1

(ai · xi)θ′ ≡
∑

(xi=vi)∈θ

ai · vi <
∑

(xi=v
′
i)∈θ

′

ai · v′i

• Sufficient conditions for implied satisfaction:
3∑
i=1

(bi · xi)θ ≥
3∑
i=1

(bi · xi)θ′ ≡
∑

(xi=vi)∈θ

bi · vi ≥
∑

(xi=v
′
i)∈θ

′

bi · v′i

By Theorem 2, if a pair (θ, θ′) of partial assignments ful-
fils same scope, unequal pair and the above sufficient con-
ditions, then θ ≺ θ′ with respect to P . One such pair is
θ = {x1 = 1, x2 = 0} and θ′ = {x1 = 0, x2 = 1}, since

var(θ) = {x1, x2} = var(θ′),

θ = {x1 = 1, x2 = 0} 6= {x1 = 0, x2 = 1} = θ′,∑
(xi=vi)∈θ

ai · vi = 1 + 0 < 0 + 4 =
∑

(xi=v
′
i)∈θ

′

ai · v′i,∑
(xi=vi)∈θ

bi · vi = 3 + 0 ≥ 0 + 2 =
∑

(xi=v
′
i)∈θ

′

bi · v′i

By Theorem 1, ¬(x1 = 0∧x2 = 1) is a dominance breaking
nogood for P in Example 1.

Non-Efficiently Checkable Constraints
By Theorem 2, the implied satisfaction for a pair (θ, θ′) of
partial assignments requires that ∀θ̄ ∈ ΘP

θ , µθ→θ
′
(θ̄) ∈

sol(P) ⇒ θ̄ ∈ sol(P), and recall that θ̄ ∈ sol(P) if and
only if θ̄ satisfies all constraints c ∈ C. The practicality
of automatic dominance breaking requires every constraint
c ∈ C to be EC, which means there are sufficient condi-
tions on (θ, θ′) to show that θ̄ satisfies c when µθ→θ

′
(θ̄)

satisfies c. This is, however, not always possible. Lee and
Zhong (2020) only give such sufficient conditions for cer-
tain classes of constraints. What if P contains constraints
with no known sufficient conditions for implied satisfaction
(yet)? We propose a way to allow skipping the checking of
such non-EC constraints and yet some dominance breaking
nogoods can still be found.

We first review a useful proposition for showing implied
satisfaction. Let cθ be the constraint obtained by replacing
every occurrence of variable x in c by value v for every as-
signment (x = v) ∈ θ.

Proposition 1. (Lee and Zhong 2020) Suppose that c ∈ C
is a constraint of a COP P = (X,D,C, f). If cθ′ ⇒ cθ,
then µθ→θ

′
(θ̄) ∈ c⇒ θ̄ ∈ c,∀θ̄ ∈ ΘP

θ .

For EC constraints, there are sufficient conditions to show
that cθ′ ⇒ cθ. To skip checking for non-EC constraints, we
rely on the following useful property.

Lemma 1. Suppose that θ and θ′ are partial assignments
of a COP P = (X,D,C, f) such that var(θ) = var(θ′),
and c ∈ C is a constraint. If var(θ) ∩ var(c) = ∅, then
θ̄↓var(c)= µθ→θ

′
(θ̄)↓var(c) for every θ̄ ∈ ΘP

θ .

Proof. Let θ̄′ = µθ→θ
′
(θ̄). The mutation mapping µθ→θ

′

replaces the θ component of θ̄ ∈ ΘP
θ with θ′, i.e. θ̄ \ θ =

θ̄′\θ′. If var(c)∩var(θ) = ∅, then θ̄↓var(c)= (θ̄\θ)↓var(c)=
(θ̄′ \ θ′)↓var(c)= θ̄′↓var(c)= µθ→θ

′
(θ̄)↓var(c).

Recall that a full assignment satisfies a constraint if
θ̄ ↓var(c)∈ c. By Lemma 1, when var(θ) ∩ var(c) = ∅,
θ̄↓var(c)∈ c ⇔ µθ→θ

′
(θ̄)↓var(c)∈ c for all θ̄ ∈ ΘP

θ . Thus,
the pair (θ, θ′) trivially satisfies implied satisfaction, and do
not have to be checked.

Theorem 3. Suppose that θ and θ′ are two partial assign-
ments of a COP P = (X,D,C1 ∪ C2, f) where F =

var(θ) = var(θ′) ⊆ X , and µθ→θ
′

is the associated mu-
tation mapping. If (θ, θ′) fulfils that: (1) for all c ∈ C1,
cθ′ ⇒ cθ, and (2) for all c ∈ C2, F ∩ var(c) = ∅, then
∀θ̄ ∈ ΘP

θ , µθ→θ
′
(θ̄) ∈ sol(P)⇒ θ̄ ∈ sol(P).

Proof. Let θ̄ ∈ ΘP
θ . (1) Suppose that c ∈ C1. By Propo-

sition 1, since cθ′ ⇒ cθ, µθ→θ
′
(θ̄) ∈ c ⇒ θ̄ ∈ c. (2)

Otherwise, c ∈ C2. Implied satisfaction hold automati-
cally by Lemma 1. Thus, θ̄ satisfies all constraints in P if
µθ→θ

′
(θ̄) satisfies all constraints in P , which means that

µθ→θ
′
(θ̄) ∈ sol(P)⇒ θ̄ ∈ sol(P).

In general, if a constraint c of P is non-EC, we can add
an extra condition var(θ) ∩ var(c) = ∅ in Pg so that θ con-
taining var(c) would not be explored for identifying domi-
nance breaking nogoods. By Theorems 2 and 3, we can still
find some pairs (θ, θ′) such that θ ≺ θ′ with respect to P ,
but the generated nogoods will not involve variables in c. In
other words, this method is useful only if var(c) is relatively
small with respect to X . Otherwise, very few nogoods can
be generated.

Common Assignment Elimination
Let Pg be a generation problem arising from a COP P ,
and S(Pg) be the set of (θ, θ′) obtained by solving Pg ,
i.e. (θ, θ′) ∈ S(Pg) if and only if all (θ, θ′) fulfils con-
ditions in Definition 1. Thus, there is a one-one corre-
spondence between sol(Pg) and S(Pg). We augment P
with all dominance breaking nogoods ¬θ′ resulting from
(θ, θ′) ∈ S(Pg). In a propagation solver, a nogood con-
straint c ≡ ¬θ′ is usually enforced to be generalized arc
consistent (GAC) (Mackworth and Freuder 1985), where for
every xij ∈ var(c) and v ∈ D(xij), there exists a tuple
(vi1 , . . . , vij−1 , v, vij+1 , . . . , vik) ∈ c, and we call the tuple
a support for value v. If the constraint is already GAC, con-
straint propagation will not remove any further values from
the domain (Schulte and Stuckey 2008).
Proposition 2. Suppose that θ′ and θ̃′ are partial assign-
ments of a COP P = (X,D,C, f). If θ̃′ ⊂ θ′, then (1)
¬θ̃′ ⇒ ¬θ′, and (2) ¬θ̃′ is GAC⇒ ¬θ′ is GAC.

Proposition 2 is easy to check and implies that if θ̃′ ⊂ θ′,
then ¬θ′ is both logically and propagation redundant with
respect to ¬θ̃′. Note that a propagation redundant constraint
does not contribute additional information to the constraint
solver (Choi, Lee, and Stuckey 2003).

Recall that a dominance breaking nogood arises from a
pair (θ, θ′) ∈ S(Pg). If there exists another pair (θ̃, θ̃′) ∈
S(Pg) such that θ̃′ ⊂ θ′, then ¬θ̃′ is added to P . There is no
need to generate (θ, θ′) and augment the model of P with
¬θ′ since ¬θ′ is logically and propagation redundant with
respect to ¬θ̃′ by Proposition 2. Thus, it suffices to compute
only the set {(θ, θ′) ∈ S(Pg) | ∀(θ̃, θ̃′) ∈ S(Pg), θ̃

′ 6⊂ θ′}.
We propose to further enhance the generation problem Pg

with extra conditions of (θ, θ′) to avoid generating a pair
(θ, θ′) of partial assignments such that ¬θ is propagation re-
dundant with respect to all other generated nogoods. In par-
ticular, we are interested in the case when θ and θ′ share a
common assignment (x = v) ∈ θ ∩ θ′.
Definition 2 (Eliminability of an Assignment). An assign-
ment (x = v) is commonly eliminable with respect to Pg if
and only if ∀(θ, θ′) ∈ S(Pg), (x = v) ∈ θ ∩ θ′ ⇒ (θ̃, θ̃′) ∈
S(Pg) where θ̃ = θ \ {x = v} and θ̃′ = θ′ \ {x = v}.

Immediately, we have the following theorem.
Theorem 4. Let Pg be a generation problem resulting from
a COP P = (X,D,C, f). If an assignment (x = v) is
commonly eliminable with respect to Pg , then ∀(θ, θ′) ∈
S(Pg),∃(θ̃, θ̃′) ∈ S(Pg) such that (x = v) /∈ θ̃ ∩ θ̃′ and
θ̃′ ⊆ θ′.

Proof. Suppose that (x = v) is not a common assignment
of (θ, θ′), i.e. (x = v) /∈ θ∩θ′. The theorem holds by letting
θ̃ = θ and θ̃′ = θ′.

Otherwise, (x = v) ∈ θ∩θ′. Let θ̃ = θ\{x = v} and θ̃′ =

θ′ \ {x = v}. Immediately, we have θ̃′ ⊂ θ′ and (x = v) /∈
θ̃′ ∩ θ̃. Since (x = v) is commonly eliminable with respect
Pg , (θ, θ′) ∈ S(Pg) implies that (θ̃, θ̃′) ∈ S(Pg).

Theorem 4 states that if an assignment (x = v) ∈ θ ∩
θ′ is commonly eliminable, then there must exist (θ̃, θ̃′) of
smaller size, and ¬θ′ is logically and propagation redundant
with respect to ¬θ̃′ by Proposition 2. So we do not want
(θ, θ′) to be generated when solving Pg , and we can add the
constraint (x = v) /∈ θ ∩ θ′ into Pg . The technique is called
Common Assignment Elimination (CAE). By Proposition 2,
the collective strength of the resulting dominance breaking
nogoods in pruning search space for P after applying CAE
remains unchanged. Thus, the key question here is how to
show that an assignment is commonly eliminable.

By definition, checking eliminability of an assignment
with respect to Pg requires us to go through each of the four
conditions in Definition 1. It is straightforward to show that
any arbitrary assignment (x = v) fulfils the eliminability
conditions for same scope and unequal pair.

Proposition 3. Suppose θ, θ′ are partial assignments for a
COP P . If (x = v) ∈ θ∩θ′, then (1) (var(θ) = var(θ′))⇒
(var(θ̃) = var(θ̃′)), and (2) (θ 6= θ′) ⇒ (θ̃ 6= θ̃′), where
(θ̃, θ̃′) = (θ \ {x = v}, θ′ \ {x = v}).

What remains is to analyze what kind of assignments fulfil
the eliminability conditions for betterment and implied sat-
isfaction. To do that, we examine and exploit the sufficient
conditions for betterment and implied satisfaction given by
Lee and Zhong (2020) for specific objectives and constraints
respectively. Unless otherwise stated, all formal results in
the remainder of this section are given within the follow-
ing context: suppose θ and θ′ are two partial assignments
of a COP P = (X,D,C, f), where var(θ) = var(θ′). The
mutation mapping for (θ, θ′) is µθ→θ

′
: ΘP

θ → ΘP
θ′ .

The Betterment Condition
This subsection reviews sufficient conditions for the better-
ment condition: if ∀θ̄ ∈ ΘP

θ , then f(θ̄) ≤ f(µθ→θ
′
(θ̄))

where f is the objective of a COP P . To prove that a com-
mon assignment (x = v) ∈ θ ∩ θ′ fulfils the eliminability
condition for betterment, we show that the sufficient condi-
tion holds for (θ̃, θ̃′) = (θ \ (x = v), θ′ \ (x = v)) whenever
(θ, θ′) does. We consider two types of objectives: separable
objectives and supermodular/submodular objectives.

Separable Objectives A function f is separable if it can
be written as a linear combination of functions of individual
variables, i.e. for a full assignment θ̄ = {(xi = vi) | xi ∈
X}, f(θ̄) = f1(v1) + · · ·+ fn(vn), where each component
is fi : Z → R. For a partial assignment θ, the projection is
f↓var(θ) (θ) = fi1(vi1)+ · · ·+fil(vil) where (xij = vij) ∈
θ for j ∈ {1, . . . , l}.

Lemma 2. (Lee and Zhong 2020) Suppose the objective f
is a separable function. If f↓var(θ)(θ) ≤ f↓var(θ′)(θ′), then
∀θ̄ ∈ ΘP

θ , f(θ̄) ≤ f(µθ→θ
′
(θ̄)).

The theorem below states that an arbitrary assignment
(x = v) fulfils the eliminability condition with respect to
betterment if (x = v) ∈ θ ∩ θ′ and f is separable.

Theorem 5. Suppose the objective f is a separable function.
If (xt = vt) ∈ θ ∩ θ′, then f ↓var(θ) (θ) ≤ f ↓var(θ′) (θ′)

implies that f↓var(θ̃)(θ̃) ≤ f↓var(θ̃′)(θ̃′) where θ̃ = θ\{xt =

vt} and θ̃′ = θ′ \ {xt = vt}.

Proof. If f↓var(θ)(θ) ≤ f↓var(θ′)(θ′), then f↓var(θ̃)(θ̃) =

f↓var(θ)(θ)−ft(vt) ≤ f↓var(θ′)(θ′)−ft(vt) = f↓var(θ̃′)(θ̃′).

Supermodular and Submodular Objectives A super-
modular function is a set function F : 2V → R that assigns
each subset U ⊆ V a value g(U) ∈ R such that

F (U ∪ T)− F (U) ≤ F (U ′ ∪ T)− F (U ′)

for every U,U ′ ⊆ V with U ⊆ U ′ and T ⊆ V \ U ′. A set
function F is submodular if −F is supermodular. Given a
partial/full assignment θ over 0-1 variables, we define a set
U(θ) = {i | (xi = 1) ∈ θ}. In the following, we say that a
function f on 0-1 variables is equivalent to a supermodular
function F if f(θ̄) = F (U(θ̄)) for any full assignment θ̄ of
P , and consider functions of this kind.

Lemma 3. (Lee and Zhong 2020) Suppose the objective
f is a function on 0-1 variables and is equivalent to a su-
permodular function F . If U(θ) ⊆ U(θ′) and F (U(θ)) ≤
F (U(θ′)), then ∀θ̄ ∈ ΘP

θ , f(θ̄) ≤ f(µθ→θ
′
(θ̄)).

By definition, removing a common assignment (x = 0)
from θ and θ′ does not affect the represented set U(θ) and
U(θ′). Thus, the sufficient condition hold for (θ̃, θ̃′) = (θ \
(x = v), θ′ \ (x = v)) whenever (θ, θ′) does.

Theorem 6. Suppose the objective f is a function on 0-1
variables and is equivalent to a supermodular function F . If
(xt = 0) ∈ θ ∩ θ′, then

1) F (U(θ)) ≤ F (U(θ′))⇒ F (U(θ̃)) ≤ F (U(θ̃′))

2) U(θ) ⊆ U(θ′)⇒ U(θ̃) ⊆ U(θ̃′)

where θ̃ = θ \ {xt = 0} and θ̃′ = θ′ \ {xt = 0}.

Proof. Since U(θ) = {i | (xi = 1) ∈ θ}, U(θ̃) =

U(θ \ {xt = 0}) = U(θ). Similarly, U(θ̃′) = U(θ′).
1) If F (U(θ)) ≤ F (U(θ′)), then F (U(θ̃)) = F (U(θ)) ≤
F (U(θ′)) = F (U(θ̃′)). 2) If U(θ) ⊆ U(θ′), then U(θ̃) =

U(θ) ⊆ U(θ′) = U(θ̃′).

The Implied Satisfaction Condition
This section reviews sufficient conditions for implied sat-
isfaction: ∀θ̄ ∈ ΘP

θ and c ∈ C, µθ→θ
′
(θ̄) satisfies c ⇒

θ̄ satisfies c. By Proposition 1, it is sufficient to show that
cθ′ ⇒ cθ. We will show that the sufficient condition

Domain Constraints A domain constraint x ∈ U is a
unary constraint that restricts a variable x to take values from
a set V ⊆ D(x).
Lemma 4. (Lee and Zhong 2020) Suppose we have a con-
straint x ∈ U where V ⊆ D(x). If either (1) x /∈ var(θ) or
(2) ∃(x = v) ∈ θ s.t. v ∈ V , then cθ′ ⇒ cθ.

Any arbitrary assignment (x = v) fulfils the eliminability
condition for implied satisfaction for domain constraints.
Theorem 7. Suppose we have a constraint xi ∈ V where
V ⊆ D(xi). If (xt = vt) ∈ θ ∩ θ′, then

(xi /∈ var(θ)) ∨ (∃(xi = vi) ∈ θ s.t. vi ∈ V)

⇒ (xi /∈ var(θ̃)) ∨ (∃(xi = vi) ∈ θ̃ s.t. vi ∈ V)

where θ̃ = θ \ {xt = vt} and θ̃′ = θ′ \ {xt = vt}.

Proof. To prove A ∨ B ⇒ C, we show that A ⇒ C and
B ⇒ C. Since var(θ̃) ⊂ var(θ), (xi /∈ var(θ)) ⇒ (xi /∈
var(θ̃))⇒ (xi /∈ var(θ̃)) ∨ (∃(xi = vi) ∈ θ̃ s.t. vi ∈ V).

Next, suppose that ∃(xi = vi) ∈ θ s.t. vi ∈ V .

• If xi and xt are the same, then so must vi and vt by defi-
nition of a partial assignment. We have xi /∈ var(θ̃) since
θ̃ = θ \ {xt = vt} = θ \ {xi = vi}.

• Otherwise, xi and xt are different. (xi = vi) ∈ θ ⇒
((xi = vi) ∈ (θ \ {xt = vt}))⇔ (xi = vi) ∈ θ̃.

Thus, (∃(xi = vi) ∈ θ s.t. vi ∈ V) ⇒ (xi /∈ var(θ̃)) ∨
(∃(xi = vi) ∈ θ̃ s.t. vi ∈ V).

Linear Inequality Constraints A linear inequality con-
straint has the form

∑
wixi ≤ b where wi, b ∈ R. The suf-

ficient condition for implied satisfaction is stated as follows.
Lemma 5. (Lee and Zhong 2020) Suppose we have a con-
straint

∑
i wixi ≤ b. If e ≤ e′ where e =

∑
(xi=vi)∈θ wivi

and e′ =
∑

(xi=v′i)∈θ′
wiv
′
i, then cθ′ ⇒ cθ.

The sufficient condition still holds when an arbitrary
common assignment (x = v) ∈ θ ∩ θ′ is removed.
Theorem 8. Given a constraint

∑
wixi ≤ b, if (xt =

vt) ∈ θ ∩ θ′, then
∑

(xi=vi)∈θ wivi ≤
∑

(xi=v′i)∈θ′
wiv
′
i ⇒∑

(xi=vi)∈θ̃ wivi ≤
∑

(xi=v′i)∈θ̃′
wiv
′
i, where θ̃ = θ \{xt =

vt} and θ̃′ = θ′ \ {xt = vt}.
The proof idea is similar to that of Theorem 5.

Boolean Disjunctions The Boolean disjunction constraint
∨x∈Sx requires that at least one Boolean variable x ∈ S
takes the true value. Here we abuse the notation to consider
false as 0 and true as 1. The sufficient condition requires that
if θ′ assigns 1 to x ∈ S, then θ does the same.
Lemma 6. (Lee and Zhong 2020) Suppose c = (∨x∈Sx)
is a Boolean disjunction constraint. If e′ ⇒ e where e =
∨(x=v)∈θv and e′ = ∨(x=v′)∈θ′v′, then cθ′ ⇒ cθ.

Note that a Boolean disjunction constraint has the prop-
erty that e ∨ 0 = e where e = ∨x∈Sx. Thus, the common
assignment (x = 0) does not affect the validity of the suffi-
cient condition for implied satisfaction.

Theorem 9. Suppose we have a Boolean disjunction con-
straint c = (∨x∈Sx). If (xt = 0) ∈ θ ∩ θ′, then
(∨(x=v′)∈θ′v′ ⇒ ∨(x=v)∈θv) implies (∨(x=v′)∈θ̃′v′ ⇒
∨(x=v)∈θ̃v) where θ̃ = θ\{xt = 0} and θ̃′ = θ′ \{xt = 0}.

Proof. Since (xt = 0) ∈ θ, we have (∨(x=v)∈θv) =
(∨(x=v)∈θ̃v) ∨ 0 = (∨(x=v)∈θ̃v). Similarly, we
have (∨(x=v′)∈θ′v′) = (∨(x=v′)∈θ̃′v′). Thus, if
(∨(x=v′)∈θ′v′) ⇒ (∨(x=v)∈θv), then (∨(x=v′)∈θ̃′v′) =

(∨(x=v′)∈θ′v′)⇒ (∨(x=v)∈θv) = (∨(x=v)∈θ̃v).

Alldifferent Constraints The alldifferent constraint en-
forces that all variables in a set T take distinct values (Régin
1994). Let val(θ, T) = {v | (x = v) ∈ θ ∧ x ∈ T}.
We say that a partial assignment θ has no duplicated values
if ∀(xi = vi), (xi′ = vi′) ∈ θ where xi 6= xi′ , we have
vi 6= vi′ . The sufficient condition for implied satisfaction
requires that val(θ, T) = val(θ′, T).
Lemma 7. (Lee and Zhong 2020) Suppose c =
alldifferent(T) where T ⊆ X . If val(θ, T) = val(θ′, T)
and both θ and θ′ have no duplicated values, then cθ′ ⇒ cθ.

Removing an arbitrary common assignment x = v from θ
and θ′ means that the value v is removed from both val(θ, T)
and val(θ′, T), and the sufficient condition still holds.
Theorem 10. If (x = v) ∈ θ ∩ θ′, then

1) (val(θ, T) = val(θ′, T))⇒ (val(θ̃, T) = val(θ̃′, T))

2) θ (or θ′) has no duplicated values ⇒ θ̃ (or θ̃′) has no
duplicated values

where θ̃ = θ \ {x = v} and θ̃′ = θ′ \ {x = v}.

Proof. 1) Suppose xt /∈ T . Since val(θ, T) = val(θ′, T),
we have val(θ̃, T) = val(θ, T) = val(θ′, T) = val(θ̃′, T).
Otherwise, if xt ∈ T , then we have val(θ, T) = val(θ̃, T) \
{vt} = val(θ′, T) \ {vt} = val(θ̃′, T).
2) Since θ has no duplicated values and θ̃ ⊂ θ, θ̃ has no
duplicated values; similarly for θ′ and θ̃′.

Applying Common Assignment Elimination
In the following, we give examples to show CAE in action.
Example 3. Consider the COP P in Example 1 and its as-
sociated generation problem Pg in Example 2, which con-
sists of sufficient conditions for betterment of a separable
objective implied satisfaction of a linear inequality con-
straint. By Theorems 5 and 8, any arbitrary assignment is
commonly eliminable. Thus, we add the set of constraints
{(xi = v) /∈ θ ∩ θ′ | i = 1, 2, 3 and v = 0, 1} to Pg .
Example 4. Suppose we extend P in the last example with a
Boolean disjunction constraint x1 ∨ x2. By Theorem 9, only
(x1 = 0) and (x2 = 0) fulfil the eliminability condition for
x1∨x2, while any arbitrary assignment xi = v is commonly
eliminable for other constraints. Thus, we only add the con-
straints {(xi = 0) /∈ θ ∩ θ′ | i = 1, 2, 3} ∪ {(x3 = 1) /∈
θ ∩ θ′} to Pg .

Note that eliminability of an assignment is checked by
examining the form of objective and constraints. Thus,
CAE can be applied mechanically by analyzing the problem
model of P in only one pass.

Experimental Evaluation

We perform experiments on Xeon E7-4830 2.20GHz pro-
cessors using MiniZinc 2.4.3 (Nethercote et al. 2007) to
model both the benchmark problems and the correspond-
ing dominance breaking nogood generation respectively.
The back-end solver is Chuffed (Ohrimenko, Stuckey, and
Codish 2009). We use six benchmark problems, and gen-
erate 20 instances for each problem configuration in order
to give meaningful comparison. The following four bench-
marks and associated models as well as the instance gen-
eration method are adopted from Lee and Zhong (2020):
(1) Knapsack-n 0-1 knapsack problem with n objects,
(2) DisjKnapsack-n disjunctively constrained 0-1 knapsack
problem (Yamada, Kataoka, and Watanabe 2002) with n ob-
jects, (3) ConcertSched-n capacitated concert hall schedul-
ing problem (Gange and Stuckey 2018) with n applications
and 10 halls, and (4) MaxCut-n weighted maximum cut
problem with n vertices and 0.1 edge probability. Two ad-
ditional benchmarks are introduced:
• KnapsackSide-n are extensions of the 0-1 knapsack prob-

lems to showcase the usefulness of Theorem 3. An in-
stance with n items is augmented with b0.02nc table
constraints, in which we randomly select three vari-
ables xi1 , xi2 , xi3 and sample each tuple from D(xi1) ×
D(xi2)×D(xi3) with probability 0.5. Note that side con-
straints can also be added to other benchmark problems.

• PCBoard-n-m are PC board manufacturing prob-
lems (Martin 2005) with n components and m devices,
where there are linear inequality constraints and a linear
objective. The model is from a public MiniZinc reposi-
tory1. Due to the problem structure, the length of domi-
nance breaking nogoods is at least 4.

Note that the original method of Lee and Zhong (2020) can-
not handle KnapsackSide because of the side constraints.
In addition, nogood generation for PCBoard was too time-
consuming with the original method, and the benefits in
search reduction cannot compensate the overhead. We use
the search strategies specified in the public models in solv-
ing the COPs, and the default of Chuffed for the generation
models. For all benchmarks, we attempt to generate all dom-
inance breaking nogoods of length up to L without CAE (L-
dom) as Lee and Zhong (2020) or with CAE (L-dom(*)) as
per our proposal.

Comparison of Generation Time
We use a uniform timeout limit of 1 hour for nogood gener-
ation. Figures 1(a) to 1(f) show the time of nogood genera-
tion in log scale. CAE clearly reduces the nogood generation
time for all benchmarks. Note that generating long nogoods
without CAE could time out for some large instances, and

1https://people.eng.unimelb.edu.au/pstuckey/dominance/

(a) Knapsack Generation Time (b) DisjKnapsack Generation Time (c) KnapsackSide Generation Time

(d) ConcertSched Generation Time (e) MaxCut Generation Time (f) PCBoard Generation Time

(g) Knapsack Total Time (h) DisjKnapsack Total Time (i) KnapsackSide Total Time

(j) ConcertSched Total Time (k) MaxCut Total Time (l) PCBoard Total Time

Figure 1: Experimental results for comparison: Figures 1(a) to 1(f) compare the generation time, and Figures 1(g) to 1(l)
compare the total time. In each subfigure, the x-axis shows different configurations, and the y-axis shows the time in log scale.

the difference between 4-dom and 4-dom(*) (between 6-
dom and 6-dom(*) for PCBoard) can be more pronounced.

Let tg(L) and t∗g(L) denote the average time for generat-
ing nogoods of length up to Lwithout and with CAE respec-
tively. We also compute the percentage decrease of genera-
tion time %g , where %g(L) =

tg(L)−t∗g(L)
tg(L)

. We only com-
pare L-dom and L-dom(*) when both of them do not time
out. The trends in Knapsack, DisjKnapsack, KnapsackSide,
ConcertSched and MaxCut are similar. The percentage de-
crease is up to 37.29% between 2-dom and 2-dom(*), up
to 69.68% between 3-dom and 3-dom(*) and up to 90.08%
between 4-dom and 4-dom(*). As for PCBoard, 4-dom(*),
5-dom(*) and 6-dom(*) reduce up to 72.40%, 76.55% and
89.75% generation time compared with 4-dom, 5-dom and
6-dom respectively. The benefits of CAE become more sig-
nificant as we attempt to generate longer nogoods.

Comparison of Overall Performance
We study the overall performance with the total time (gen-
eration time + solving time) as the evaluation metric. The
timeout for the whole solving process (nogood generation +
problem solving) is set to 2 hours, while we keep the time-
out for nogood generation as 1 hour. If nogood generation
times out, we augment the problem model with only the no-
goods generated so far. We also perform experiments using
no dominance breaking constraint (no-dom) and using man-
ual dominance breaking constraints (manual) from the lit-
erature (Chu and Stuckey 2013; Gange and Stuckey 2018) ,
where the timeout is set to 2 hours. We only show results of
manual since the solving time of no-dom is orders of mag-
nitude worse than that of manual. Figures 1(g) to 1(l) show
the average solving (bars with stripe pattern) and generation
time (bars without stripe pattern) in log scale, where the bars
for generation time are stacked on the bars for solving time.

We first compare the problem solving time. Against man-
ual dominance breaking constraints, the automatically gen-
erated dominance breaking nogoods are always stronger in
search space reduction when L is large. If we compare L-
dom and L-dom(*), the problem solving times are usually
the same, which is consistent with Proposition 2. The only
exception is in large instances of Knapsack, DisjKnapsack
and KnapsackSide. For these problems, both 4-dom and 4-
dom(*) cannot finish completely within one hour, but 4-
dom(*) generates more nogoods than 4-dom. In Knapsack
and KnapsackSide, the problem solving time slightly in-
creases due to the overhead introduced by the extra nogoods,
while in DisjKnapsack, the benefits from the reduction of
search space wins over the overhead.

In the end, the key comparison is the total time. Auto-
matic dominance breaking outperforms manual in almost
all benchmarks even before applying CAE. The exception is
PCBoard, where the method of automatic dominance break-
ing outperforms manual only after CAE is applied, and
the decrease of average total time is up to 2660.75 sec-
onds for PCBoard-9-7. To compare the total time for L-
dom and L-dom(*), we also compute the percentage de-
crease of total time %t for measurement, i.e. %t(L) =
(ts(L)+tg(L))−(t∗s(L)+t

∗
g(L))

ts(L)+tg(L)
, where ts(L) and t∗s(L) are the

average problem solving time of COPs augmented with gen-
erated nogood of length up to L. In general, the performance
gain of CAE depends on whether nogood generation takes a
large part in the whole solving process. For ConcertSched,
2-dom and 2-dom(*) are usually the best, and %t is at most
12.08%. As for MaxCut, 4-dom(*) is the best for large in-
stances, which spends up to 49.58% less than 4-dom. The
problem structures of Knapsack, DisjKnapsack and Knap-
sackSide are similar, where the problem augmented with no-
goods of length up to 3 are usually the best. The percentage
decrease in runtime is at least 28.44% and at most 65.57%
after CAE is applied. PCBoard has the most to gain from
CAE, which demands for longer dominance breaking no-
goods. The method 5-dom is usually the best if CAE is not
applied. After applying the technique, 6-dom(*) comes out
on top, which reduces from 5-dom by 2449.26 seconds and
6-dom by 3034.01 seconds on average. The percentage de-
crease of 6-dom(*) can be as much as 88.48% compared
with 6-dom.

Discussions
The more dominance breaking nogoods we have, the more
we can prune the search space but (a) it takes time to gen-
erate the nogoods and (b) nogoods are also overheads to the
propagation solver. The “optimal” nogood length for each
problem varies. Even with CAE, we are able to generate
nogoods with length only up to 6. Our experience is that a
length of 3 or 4 is usually enough, but some experimentation
may be required for different problems.

Also, we conjecture that Lee and Zhong’s method hinges
on a lazy clause generation solver, such as Chuffed (Ohri-
menko, Stuckey, and Codish 2009), as it is good at han-
dling (generated) nogoods. It can also combine multiple no-
goods (our nogoods and/or nogoods from conflicts) to learn
stronger ones, hence stronger propagation.

Concluding Remarks
Automatic dominance breaking represents an important step
towards the Holy Grail (Freuder 1997). This work enlarges
the class of problems that can benefit from the automation.
Our specific contributions are threefold. First, we remove
a restriction of the original Lee and Zhong method that
all constraints must be efficiently checkable, and demon-
strate that the method generates enough nogoods to speed
up the solving of problems with small-scope non-EC side
constraints. Second, we present techniques to avoid the gen-
eration of unnecessary nogoods and yet maintain the prun-
ing strength of the generated nogoods. Third, our theory is
backed by extensive empirical evaluation.

A future direction of work is to perform an extensive eval-
uation of automatic dominance breaking on public bench-
marks such as the MiniZinc Challenge (Stuckey, Becket, and
Fischer 2010) and the MIPLIB (Gleixner et al. 2020). An-
other research direction is to understand the characteristics
and roles of individual (groups of) nogoods and further im-
prove the efficiency by only generating a subset of nogoods
that are most promising for search space reduction.

Acknowledgments
We are grateful to the anonymous referees of AAAI-21 for
their useful comments and suggestions. We also thank the
financial support by a Direct Grant from The Chinese Uni-
versity of Hong Kong.

References
Aldowaisan, T. 2001. A new heuristic and dominance rela-
tions for no-wait flowshops with setups. Computers & Op-
erations Research 28(6): 563–584.
Choi, C. W.; Lee, J. H. M.; and Stuckey, P. J. 2003. Propa-
gation redundancy in redundant modelling. In International
Conference on Principles and Practice of Constraint Pro-
gramming, 229–243. Springer.
Chu, G.; and Stuckey, P. J. 2012. A generic method for iden-
tifying and exploiting dominance relations. In Principles
and Practice of Constraint Programming, 6–22.
Chu, G.; and Stuckey, P. J. 2013. Dominance driven search.
In International Conference on Principles and Practice of
Constraint Programming, 217–229. Springer.
Freuder, E. C. 1997. In pursuit of the holy grail. Constraints
2(1): 57–61.
Gange, G.; and Stuckey, P. J. 2018. Sequential Precede
Chain for Value Symmetry Elimination. In International
Conference on Principles and Practice of Constraint Pro-
gramming, 144–159. Springer.
Getoor, L.; Ottosson, G.; Fromherz, M.; and Carlson, B.
1997. Effective redundant constraints for online scheduling.
In The Eleventh AAAI Conference on Artificial Intelligence,
302–307.
Gleixner, A.; Hendel, G.; Gamrath, G.; Achterberg, T.; Bas-
tubbe, M.; Berthold, T.; Christophel, P. M.; Jarck, K.; Koch,
T.; Linderoth, J.; Lübbecke, M.; Mittelmann, H. D.; Ozyurt,
D.; Ralphs, T. K.; Salvagnin, D.; and Shinano, Y. 2020.
MIPLIB 2017: Data-Driven Compilation of the 6th Mixed-
Integer Programming Library. Mathematical Programming
Computation Accepted for publication.
Korf, R. E. 2004. Optimal rectangle packing: new results.
In The Fourteenth International Conference on Automated
Planning and Scheduling, 142–149.
Lee, J. H.; and Zhong, A. Z. 2020. Automatic dominance
breaking for a class of constraint optimization problems.
In Twenty-Ninth International Joint Conference on Artificial
Intelligence, 1192–1200.
Mackworth, A. K.; and Freuder, E. C. 1985. The com-
plexity of some polynomial network consistency algorithms
for constraint satisfaction problems. Artificial intelligence
25(1): 65–74.
Martin, R. 2005. The challenge of exploiting weak symme-
tries. In International Workshop on Constraint Solving and
Constraint Logic Programming, 149–163. Springer.
Mears, C.; and Garcia de la Banda, M. 2015. Towards auto-
matic dominance breaking for constraint optimization prob-
lems. In Twenty-Fourth International Joint Conference on
Artificial Intelligence.

Monette, J.-N.; Schaus, P.; Zampelli, S.; Deville, Y.; Dupont,
P.; et al. 2007. A CP approach to the balanced academic
curriculum problem. In Seventh International Workshop on
Symmetry and Constraint Satisfaction Problems, volume 7.
Nethercote, N.; Stuckey, P. J.; Becket, R.; Brand, S.; Duck,
G. J.; and Tack, G. 2007. MiniZinc: Towards a standard CP
modelling language. In International Conference on Prin-
ciples and Practice of Constraint Programming, 529–543.
Springer.
Ohrimenko, O.; Stuckey, P. J.; and Codish, M. 2009. Prop-
agation via lazy clause generation. Constraints 14(3): 357–
391.
Prestwich, S.; and Beck, J. C. 2004. Exploiting dominance
in three symmetric problems. In Fourth international work-
shop on symmetry and constraint satisfaction problems, 63–
70.
Régin, J.-C. 1994. A filtering algorithm for constraints of
difference in CSPs. In The Eighth AAAI Conference on Ar-
tificial Intelligence, 362–367.
Schulte, C.; and Stuckey, P. J. 2008. Efficient constraint
propagation engines. ACM Transactions on Programming
Languages and Systems (TOPLAS) 31(1): 2.
Stuckey, P. J.; Becket, R.; and Fischer, J. 2010. Philosophy
of the M ini Z inc challenge. Constraints 15(3): 307–316.
Yamada, T.; Kataoka, S.; and Watanabe, K. 2002. Heuris-
tic and exact algorithms for the disjunctively constrained
knapsack problem. Information Processing Society of Japan
Journal 43(9).

