
Exploiting Functional Constraints in Automatic
Dominance Breaking for Constraint Optimization
Jimmy H. M. Lee !

Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin,
N.T., Hong Kong

Allen Z. Zhong !

Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin,
N.T., Hong Kong

Abstract
Dominance breaking is an effective technique to reduce the time for solving constraint optimization
problems. Lee and Zhong propose an automatic dominance breaking framework for a class of
constraint optimization problems based on specific forms of objectives and constraints. In this
paper, we propose to enhance the framework for problems with nested function calls which can be
flattened to functional constraints. In particular, we focus on aggregation functions and exploit
such properties as monotonicity, commutativity and associativity to give an efficient procedure for
generating effective dominance breaking nogoods. Experimentation also shows orders-of-magnitude
runtime speedup using the generated dominance breaking nogoods and demonstrates the ability of
our proposal to reveal dominance relations in the literature and discover new dominance relations
on problems with ineffective or no known dominance breaking constraints.
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1 Introduction

Dominance relations [7, 18] in Constraint Optimization Problems (COPs) describe relations
between two full assignments where one is known to be subordinate compared with another
concerning satisfiability and/or objective value. Dominance breaking, which adds additional
constraints to remove dominated full assignments, is known to be effective in a range of
problems [1, 16, 22, 31] but also demands sophisticated insights into the problem structures.
Lee and Zhong [25, 24] give the method of automatic dominance breaking for a class of
COPs, which can identify dominance relations and generate dominance breaking constraints
automatically. Yet, the method is restricted to COPs with only objectives and constraints that
are all provably efficiently checkable. For example, in order to apply automatic dominance
breaking to a COP, the objective is required to be either a separable function or a submodular
function. This prevents the use of automatic dominance breaking for COPs with varying
objectives and constraints, especially the ones with nested function calls.

Functional expressions are ubiquitous in problem modelling, while the objective and con-
straints with functional expressions are usually not efficiently checkable. In practice, however,
COPs are usually specified in a high-level modeling language [10, 28] and normalized/flattened
into a form with only standard constraints.

I Example 1. Consider a simple COP which minimizes the objective max(z1, z2) + 4z3
subject to the constraint 2z1 +3z2 ∗z3 ≤ 5, where z1, z2, z3 ∈ {1, 2, 3}. The objective with the
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6:2 Exploiting Functional Constraints in Automatic Dominance Breaking

max function and the constraint with the multiplying function are not efficiently checkable.
After normalization, the COP can become:

minimize obj
subject to y2 ≤ 5, obj = y1 + 4z3, y1 = max(z1, z2),

y2 = 2z1 − 3y3, y3 = z2 ∗ z3,

z1, z2, z3 ∈ {1, 2, 3}, y1, y2, y3, obj ∈ Z

(1)

Note that y1, y2, y3 and obj are newly introduced variables, and are functionally defined by
y1 = max(z1, z2), y2 = 2z1 − 3y3, y3 = z2 ∗ z3 and obj = y1 + 4z3 respectively. We call these
functional constraints, while y2 ≤ 5 is a non-functional constraint.

In this paper, we propose to exploit functional constraints to identify useful dominance
relations in COPs with nested function calls. We first generalize the theory of dominance to
normalized COPs which contain functionally defined variables and functional constraints.
We present a method for automatic derivation of sufficient conditions for dominance relations
in COPs based on functional constraints and common properties such as monotonicity,
commutativity and associativity. The proposed method is implemented on top of the MiniZinc
compiler [28]. Experimentation on various benchmarks confirms the superior efficiency of
the generated nogoods to solve problems with ineffective or no known dominance breaking
constraints in the literature. Even when nogoods are costly to generate, we give two case
studies on the Steel Mill Slab Design Problem [11] and the Balanced Academic Curriculum
Problem [5] to show how we can discover dominance relations and compact dominance
(symmetry) breaking constraints by studying the nogood patterns of small instances.

2 Background

A variable x is an unknown. A domain D maps each variable x to the finite set D(x) which
contains the possible values for x. An assignment θ on a set of variables S = {x1, . . . , xk} is
a tuple (v1, . . . , vk) ∈ DS = D(x1)× · · · ×D(xk), where vj = θ[xj ] is the value assigned to
xj in θ, and S = var(θ) is the scope of θ. We abuse notations to use θ[S′] to denote the tuple
formed by projecting θ ∈ DS onto S′ ⊂ S. A constraint c is a subset of the Cartesian product
DS where S = var(c) is the scope of c. An assignment θ satisfies a constraint c if θ[var(c)] ∈ c,
where var(θ) ⊇ var(c). We define a nogood ¬θ for an assignment θ to be a constraint of
the form ∨x∈var(θ)(x 6= θ[x]), and its length is always equal to the scope size |var(θ)|. A
functional constraint is of the form y = h(x1, . . . , xk) where h : D{x1,...,xk} 7→ D{y} is a
function mapping any assignment on variables {x1, . . . , xk} to a unique assignment on y.

A Constraint Satisfaction Problem (CSP) is a tuple (X,D,C) where X is a set of variables,
D is a domain for X and C is a set of constraints. A Constraint Optimization Problem
(COP) (X,D,C, obj) extends a CSP with an objective variable obj which is to be minimized.
Let θ̄ ∈ DX denote a full assignment whose scope is X. A solution of a COP/CSP P is
a full assignment θ̄ ∈ DX such that θ̄ satisfies all constraints c ∈ C. We let sol(P ) ⊆ DX
denote the set of all solutions of P . The goal of solving a COP is to find an optimal solution
θ̄∗ ∈ sol(P ) such that θ̄∗[obj] ≤ θ̄[obj] for all solutions θ̄ ∈ sol(P ), and θ̄∗[obj] is the optimal
value of P .

A dominance relation ≺ over DX [7] is a transitive and irreflexive relation such that
∀θ̄, θ̄′ ∈ DX , if θ̄ ≺ θ̄′ with respect to P , then either: (1) θ̄ ∈ sol(P ) and θ̄′ /∈ sol(P ), or
(2) θ̄, θ̄′ ∈ sol(P ) and θ̄[obj] ≤ θ̄′[obj], or (3) θ̄, θ̄′ /∈ sol(P ) and θ̄[obj] ≤ θ̄′[obj]. Dominance
relations can be generalized [25] to assignments over DS where S ⊆ X. Let DXθ = {θ̄ ∈
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DX | θ̄[var(θ)] = θ} be a subset of DX . We say that θ dominates θ′ with respect to P
iff ∀θ̄′ ∈ DXθ′ ,∃θ̄ ∈ DXθ such that θ̄ ≺ θ̄′ for some dominance relation ≺ with respect to P .
When the context is clear, we abuse notations and let θ ≺ θ′ denote θ dominates θ′.

I Theorem 2. [25] Suppose θ, θ′ ∈ DS are assignments of P = (X,D,C, obj) where S ⊆ X.
If θ ≺ θ′ with respect to P , then removing all assignments in DXθ′ preserves the same
satisfiability and optimal value of P .

Note that removing all dominated full assignments in DXθ′ only requires to add a nogood ¬θ′
to P . While generating all dominance breaking nogoods is impractical, Lee and Zhong [25]
formulate it as constraint satisfaction to identify and exploit only a subset of such nogoods.
The constraints in the generation CSPs are sufficient conditions over pairs (θ, θ′) of assign-
ments such that θ ≺ θ′ with respect to P . The key step is to derive constraints in the
generation CSP automatically as sufficient conditions for dominance relations. Lee and
Zhong [25] give such constraints directly based on the objective and constraint types, but it
is not easily extensible especially when there are nested function calls as shown in Example 1.
To tackle this problem, we generalize the theory of dominance in Section 3 and present a
method for automatic sufficient condition derivation in Section 4.

3 Functional Constraints and Dominance

In this paper, we assume that a COP P = (X,D,C, obj) is the result of applying some sort
of flattening procedure, such as the one used in the MiniZinc compiler [26] and similar to
that shown in Example 1, to a problem model. Therefore, we have a set CY of functional
constraints, each defining a variable y ∈ Y , and a set of non-functional constraints. Our
proposed method utilizes the functional constraints and the properties of functions to derive
sufficient conditions for dominance as shown in the following example.

I Example 3. Consider the COP in (1) and θ, θ′ ∈ DS where S = {z1, z2}. Our aim is to
find sufficient conditions over θ and θ′ that imply all full assignments in DXθ′ can be removed.
Suppose we only consider full assignments that satisfy all functional constraints in (1). For
each full assignment θ̄′ ∈ DSθ′ , we focus on a corresponding θ̄ ∈ DS where θ̄[z3] = θ̄′[z3]. By
definition of dominance relations, if we have (a) betterment: θ̄[obj] ≤ θ̄′[obj], (b) implied
satisfaction: θ̄[y2] ≤ θ̄′[y2], and (c) θ 6= θ′, then θ̄′ is dominated by θ̄ and hence can be
removed. We can find sufficient conditions for betterment as follows:

Variable obj is defined by obj = y1 + 4z3. If we have θ̄[y1] + 4θ̄[z3] ≤ θ̄′[y1] + 4θ̄′[z3], then
θ̄[obj] ≤ θ̄′[obj] must hold since θ̄ and θ̄′ satisfy all functional constraints.
Variable y1 is defined by y1 = max(z1, z2). It suffices to show that

max(θ̄[z1], θ̄[z2]) + θ̄[z3] ≤ max(θ̄′[z1], θ̄′[z2]) + θ̄′[z3]. (2)

The summation function is monotonically increasing, (2) must be true if we have

max(θ̄[z1], θ̄[z2]) ≤ max(θ̄′[z1], θ̄′[z2]) ∧ θ̄[z3] ≤ θ̄′[z3] (3)

Since θ̄ ∈ DXθ and θ̄′ ∈ DXθ′ , we have θ̄[z1] = θ[z1], θ̄[z2] = θ[z2], θ̄′[z1] = θ′[z1], and
θ̄′[z2] = θ′[z2]. The condition (3) is equivalent to

max(θ[z1], θ[z2]) ≤ max(θ′[z1], θ′[z2]) (4)

Inequality (θ̄[z3] ≤ θ̄′[z3]) must hold since θ̄[z3] = θ̄′[z3]. Thus, if θ and θ′ satisfy (4), the
betterment condition must hold.
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6:4 Exploiting Functional Constraints in Automatic Dominance Breaking

Similarly, we can find the sufficient condition for implied satisfaction as follows:
Variable y2 is defined by y2 = 2z1 − 3y3, θ̄[y2] ≤ θ̄′[y2] must be true if

2θ̄[z1] ≤ 2θ̄′[z1] ∧ 3θ̄[y3] ≥ 3θ̄′[y3] (5)

Variable y3 is defined by y3 = z2 ∗ z3. Since z2, z3 ≥ 0, 3θ̄[y3] ≥ 3θ̄′[y3] must hold if

θ̄[z2] ≥ θ̄′[z2] ∧ θ̄[z3] ≥ θ̄′[z3] (6)

Since θ̄[z3] = θ̄′[z3], the latter condition must hold.
By definitions, we have θ̄[z1] = θ[z1], θ̄[z2] = θ[z2], θ̄′[z1] = θ′[z1], and θ̄′[z2] = θ′[z2], and
therefore (5) and (6) must hold if

θ[z1] ≤ θ′[z1] ∧ θ[z2] ≥ θ′[z2] (7)

The generation CSP for θ and θ′ contains (4) and (7). To ensure the compatibility of
generated nogoods, we can follow Lee and Zhong [25] to add the lexicographic ordering
constraint (θ[z1], θ[z2]) <lex (θ′[z1], θ′[z2]). One possible solution of the generation CSP is
the pair (θ, θ′) where θ = (1, 2) and θ′ = (2, 1), and the constraint ¬θ′ ≡ (z1 6= 2 ∨ z2 6= 1)
is a dominance breaking nogoods in (1). Similar derivation can also be applied to pairs of
assignments over other scopes to obtain more dominance breaking nogoods.

As shown in Example 3, our method identify nogoods by the following process:
1. Choose a cardinality of a scope S
2. Enumerate all possible scope S with the chosen cardinality. For each S:

a. Derive sufficient conditions and synthesize a generation CSP for S
b. Solve all solutions of the generation CSP
c. Collect the derived nogoods from the solutions (one nogood from each solution)

3. Add all the collected nogoods to the COP before solving

The key step is to synthesize a generation CSP considering the functional constraints. In the
following, we give a theory of dominance for normalized COPs.

For ease of presentation, we associate each non-functional constraint c ∈ (C \ CY ) with a
reified variable b ∈ {0, 1}, where a full assignment θ̄ satisfies c iff θ̄[b] = 01. In other words,
we treat each constraint c ∈ (C \ CY ) as a function returning 0/1 and define a (reified)
functional constraint cb ≡ (b = c(xi1 , . . . , xik )). If θ̄[b] ≤ θ̄′[b] for two full assignments θ̄ and
θ̄′, then θ̄′ satisfies c implies that θ̄ also satisfies c. We let CB denote the set of (reified)
functional constraints and B denote the set of reified variables.

Without loss of generality, let (Z, Y,B) and (CB , CY ) be a partition of variables X and
constraints C respectively in a normalized COP, where Z ∪ Y ∪B = X, CB ∪ CY = C and
obj ∈ Y . Note that Z, Y,B are pairwise disjoint and CB ∩ CY = ∅. In case a variable y ∈ Y
is introduced by the flattening procedure, we set the domain for y to be the largest possible
set, and therefore, a constraint cy ∈ CY must be satisfied if the value of y ∈ Y is computed
from the assignments over variables xi1 , . . . , xik . Note that when there is no flattening and
reification, our definition of a COP degenerates to the classical definition [34].

We say that a full assignment θ̄ is functionally valid iff (a) θ̄[b] = c(θ̄[xi1 ], . . . , θ̄[xik ]) for
(b = c(xi1 , . . . , xik )) ∈ CB and (b) θ̄[y] = h(θ̄[xi1 ], . . . , θ̄[xik ]) for (y = h(xi1 , . . . , xik )) ∈ CY .

1 Note that this is different from the convention that 0 means false and 1 means true
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Note that θ̄ in a normalized COP will correspond to a full assignment in the original non-
flattened problem model iff θ̄ is functionally valid. The value for y ∈ Y (respectively b ∈ B)
in a functionally valid full assignment are determined by cy ∈ CY (respectively cb ∈ CB) as
well as values for variables in Z. We define the set of determining variables A(x) ⊆ Z of a
variable x ∈ X is

A(z) = {z} for a variable z ∈ Z,
A(y) = ∪x∈var(cy)\yA(x) for a variable y ∈ Y , and
A(b) = ∪x∈var(cb)\bA(x) for a variable b ∈ B.

In the remainder of the paper, we assume that P = (X,D,C, obj) is a normalized COP
and consider only functionally valid full assignments in DX . Our aim is to find sufficient
conditions for a pair of assignments θ and θ′ over S ⊆ Z such that θ ≺ θ′ with respect to
P . Recall that θ ≺ θ′ requires ∀θ̄′ ∈ DXθ′ ,∃θ̄ ∈ DXθ such that θ̄ ≺ θ̄′ for some dominance
relation over DX . It is expensive to check whether there exists θ̄ for each θ̄′ in DXθ′ . Instead,
we propose to check only if a specific θ̄ dominates θ̄′ by utilizing a mutation mapping for two
assignments θ and θ′ over the same scope.

I Definition 4. The mutation mapping µθ→θ′ for two assignments θ, θ′ over the scope S
maps a full assignment θ̄ ∈ DXθ to another full assignment θ̄′ ∈ DXθ′ such that:

θ̄′[z] = θ′[z] for z ∈ var(θ),
θ̄′[z] = θ̄[z] for z ∈ Z \ var(θ),
θ̄′[y] = h(θ̄′[xi1 ], . . . , θ̄′[xik ]) where y ∈ Y is defined by y = h(xi1 , . . . , xik ) ∈ CY ,
θ̄′[b] = c(θ̄′[xi1 ], . . . , θ̄′[xik ]) where b ∈ B is defined by b = c(xi1 , . . . , xik ) ∈ CB.

In other words, µθ→θ′ “mutates” the θ component of θ̄ to become θ′ and assigns the values
of variables in Y ∪B accordingly. The mutation mapping µθ→θ′ is a bijection, and thus the
inverse mapping (µθ→θ′)−1 = µθ

′→θ always exists. The following proposition characterizes
some useful properties of the mutation mapping.

I Proposition 5. The followings are true for all full assignments θ̄ ∈ DXθ and θ̄′ = µθ→θ
′(θ̄):

If z ∈ S, then θ̄[z] = θ[z] and θ̄′[z] = θ′[z].
If z ∈ Z \ S, then θ̄[z] = θ̄′[z].

The following result gives a sufficient condition governing when θ ≺ θ′ with respect to P .

I Theorem 6. If a pair of assignments θ, θ′ ∈ DS satisfies:
empty intersection: DXθ ∩ DXθ′ = ∅,
betterment: ∀θ̄ ∈ DXθ , θ̄[obj] ≤ µθ→θ

′(θ̄)[obj], and
implied satisfaction: ∀b ∈ B, ∀θ̄ ∈ DXθ , θ̄[b] ≤ µθ→θ′(θ̄)[b],

then θ dominates θ′ with respect to P .

Theorems 2 and 6 imply that ¬θ′ is a dominance breaking nogood to remove all dominated
solution in DXθ′ . To further ensure that all generated nogoods are compatible in the sense that
not all optimal solutions of P are eliminated, a lexicographic ordering constraint θ <lex θ′
is also added to the generation CSP [25]. What remains is to find constraints over θ and
θ′ that are sufficient conditions for empty intersection, betterment and implied satisfaction.
Empty intersection is trivially satisfied if θ 6= θ′. In Section 4, we will focus on finding
sufficient conditions for betterment and implied satisfaction. Note that the above definitions
and results degenerate to those by Lee and Zhong [25] when Y and CY are empty.

CP 2022



6:6 Exploiting Functional Constraints in Automatic Dominance Breaking

4 Automatic Sufficient Condition Derivation

In this section, we describe formally how functional constraints and their properties are used
for deriving effective sufficient conditions for betterment and implied satisfaction, which are
predicates requiring an inequality to hold for all θ̄ ∈ DXθ . When it is clear from the context,
we let θ̄′ = µθ→θ

′(θ̄) denote the image by the mutation mapping of θ and θ′. We first present
a general algorithm which only utilizes functional constraints, followed by rules that exploits
the functional properties of monotonicity, associativity and commutativity.

4.1 General Decomposition
To formalize the derivation of sufficient conditions, we use the inductive definition of terms [2]:

a variable x is a term, and
if f is a k-ary function and t1, . . . , tk are terms, then f(t1, . . . , tk) is a term.

By abusing notations, we define var(t) = {x} when t ≡ x, and var(t) = ∪ki=1var(ti)
when t ≡ f(t1, . . . , tk). Note that f can either be the constraint c in a reified constraint
b = c(xi1 , . . . , xik ) or the function h in a functional constraint y = h(xi1 , . . . , xik ). We say
that a variable x is fixed in an assignment θ when the set of determining variables A(x)
of x is a subset of var(θ). A term t is fixed in θ iff all variables of t are fixed in θ, i.e.,
∧x∈var(t)(A(x) ⊆ var(θ)); otherwise t is a free.

A substitution is a finite mapping from variables to terms which assigns to each variable
x a term t different from x. We write a substitution as β = {xi1/t1, . . . , xik/tk} where
xi1 , . . . , xik are different variables, and t1, . . . , tk are terms such that ∀j ∈ {1, . . . , k}, xij 6≡ tj .
A substitution β can be applied to a term t to obtain tβ by replacing every occurrence of
variable xij in t by the term tj for all j ∈ {1, . . . , k}.

Let C be an operator in {≤,≥,=}. The betterment and implied satisfaction condition
in Theorem 6 are predicates in the form of quantified inequalities, i.e., (∀θ̄ ∈ DXθ , tθ̄ C tθ̄′),
where tθ̄ and tθ̄′ are obtained by substituting each variable in t with its values in θ̄ and θ̄′
respectively. Algorithm 1 shows an automatic process that derives predicates as sufficient
conditions for the betterment and implied satisfaction, and all variables in the sufficient
conditions are fixed in θ and θ′. The algorithm maintains two sets of predicates Q and
F , where Q consists of predicates that have to be further processed, and F is the set of
predicates whose variables are all in S. The while loop continues until Q is empty and all
predicates has been processed. In each iteration of the while loop, a predicate is removed
from Q and processed by replacement (lines 4 to 7), binding (lines 8 to 9), deletion (lines 10
to 11) and general decomposition (lines 12 to 14) rules respectively. Finally, F is returned for
synthesizing the generation CSP. Note that t must be a function term of the form f(t1, . . . , tk)
in line 13, since var(t) is a subset of Z and var(t) has non-empty intersection with both
S and Z \ S. The following theorem states an important property of Algorithm 1. For
simplicity, let Q ∧ F denote the conjunction of all predicates in Q and F .

I Theorem 7. Algorithm 1 preserves the invariant that Q∧F is always a sufficient condition
for betterment and implied satisfaction of P .

Proof. Since Q is initialized with the betterment and implied satisfaction, the statement
holds at the beginning. By induction, it suffices to show that when Q ∧ F is still a sufficient
condition after an iteration in the while loop. There are four rules in the iteration:

Replacement: the predicate ∀θ̄ ∈ DXθ , tθ̄ C tθ̄′ is equivalent to ∀θ̄ ∈ DXθ , (tβ)θ̄ C (tβ)θ̄′,
because we assume that full assignments are all functionally valid.
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Algorithm 1 Deriving sufficient conditions for betterment and implied satisfaction

1: Q← {(∀θ̄ ∈ DXθ , θ̄[obj] ≤ θ̄′[obj])} ∪ {(∀θ̄ ∈ DXθ , θ̄[b] ≤ θ̄′[b]) | b ∈ B}, F ← ∅
2: while Q 6= ∅ do
3: Remove a predicate p ≡ (∀θ̄ ∈ DXθ , tθ̄ C tθ̄′) from Q

4: if var(t) ∩ (Y ∪B) 6= ∅ then
5: Let x ∈ var(t) ∩ (Y ∪B) be a variable defined by x = f(xi1 , . . . , xik )
6: β ← {x/f(xi1 , . . . , xik )}
7: Q← Q ∪ {(∀θ̄ ∈ DXθ , (tβ)θ̄ C (tβ)θ̄′)} // Replacement
8: else if var(t) ⊆ S ⊆ Z then
9: F ← F ∪ {(tθ C tθ′)} // Binding
10: else if var(t) ⊆ (Z \ S) then
11: Continue // Deletion
12: else
13: Let p be (∀θ̄ ∈ DXθ , f(t1θ̄, . . . , tkθ̄) C f(t1θ̄′, . . . , tkθ̄′))
14: Q← Q ∪ {(∀θ̄ ∈ DXθ , tiθ̄ = tiθ̄

′) | ∀i ∈ {1, . . . , k}} // General Decomposition
15: end if
16: end while
17: return F

Binding: the predicate (∀θ̄ ∈ DXθ , tθ̄Ctθ̄′) is equivalent to (tθCtθ′) by Proposition 5, since
a variable x in var(t) also belongs to S ⊆ Z, and we have θ̄[x] = θ[x] and θ̄′[x] = θ′[x].
Deletion: by Proposition 5 again, ∀x ∈ var(t) where x ∈ Z and x /∈ S, we have θ̄[x] = θ̄′[x].
Therefore, the predicate tθ̄ = tθ̄′ must hold and imply that tθ̄ ≤ tθ̄′ and tθ̄ ≥ tθ̄′.
General decomposition: the conjunction ∧ki=1(∀θ̄ ∈ DXθ , tiθ̄ = tiθ̄

′) implies (∀θ̄ ∈
DXθ , f(t1θ̄, . . . , tkθ̄) C f(t1θ̄′, . . . , tkθ̄′)) by definitions of functional and reified constraints.

Therefore, the invariant is preserved in Algorithm 1. J

Note that the replacement, binding and deletion rules are equivalent transformation of predic-
ates, while general decomposition replaces p ≡ (∀θ̄ ∈ DXθ , f(t1θ̄, . . . , tkθ̄) C f(t1θ̄′, . . . , tkθ̄′))
into a set of predicates that are sufficient conditions for p.

I Theorem 8. Algorithm 1 always terminates.

Proof. Without loss of generality, we assume that each variable y ∈ Y appears only in at
most one constraint other than the functional constraint y = h(xi1 , . . . , xik ). By definition
of a COP, Y ∪B and CY ∪ CB are finite sets. We maintain three natural numbers:

v1: the number of variables in Y ∪B that have not been substituted in replacement,
v2: the number of occurrences of function symbols in Q, and
v3: the sum of |var(t)| for all predicates (∀θ̄ ∈ DXθ , tθ̄ C tθ̄′) ∈ Q.

We claim that applying each rule reduces the triple (v1, v2, v3) in a lexicographic sense. Indeed,
each variable x ∈ Y ∪B is only substituted when x is in the flattened constraint or the reified
constraint, replacement must decrease v1 by 1. General decomposition decreases v2 while
keeping v1 unchanged. Further, binding and deletion remove one predicate (∀θ̄ ∈ DXθ , tθ̄Ctθ̄′)
from Q and therefore decrease v3 by var(t). The termination follows from the fact that there
is no infinite descending sequence of triples of natural numbers. J

The set Q is empty upon termination, and the following corollary is a direct consequence
of Theorems 7 and 8.

CP 2022



6:8 Exploiting Functional Constraints in Automatic Dominance Breaking

I Corollary 9. When Algorithm 1 terminates, the conjunction of predicates in F is a sufficient
condition for the betterment and implied satisfaction of P .

In other words, Algorithm 1 is sound in the sense that F consists of predicates that are
sufficient conditions for betterment and implied satisfaction in Theorem 6. The general
decomposition considers that a function f is general without any properties, but this may
result in too restrictive sufficient conditions. For example, if we use Algorithm 1 for the
COP in (1), the resulting sufficient conditions for betterment and implied satisfaction will be
θ[z1] = θ′[z1] and θ[z2] = θ′[z2], which is in conflict with the empty intersection condition in
Theorem 6. No solution can be found by solving the generation CSP, and no nogoods can be
generated. Therefore, we want more relaxed sufficient conditions as far as possible.

We say that a predicate α is stronger than another predicate β iff α ⇒ β, and β is
weaker than α. The weaker the sufficient conditions in the generation CSP, the more
pairs of assignments will satisfy all the conditions and the more nogoods can be found by
Theorem 6. The idea is to apply different decomposition rules to derive weaker sufficient
conditions based on properties of functions in functional and reified constraints. Aggregation
functions [17], such as summation, maximum and minimum, combine multiple values into a
single representative value. They are common in modeling COPs and enjoy useful properties
such as monotonicity, commutativity and associativity.

4.2 Decomposition for Monotonic Functions
The first property of interest is monotonicity. A function f : Rk 7→ R is monotonically
increasing if (∀i, ai ≤ bi) ⇒ f(a1, . . . , ak) ≤ f(b1, . . . , bk) and is monotonically decreasing
if (∀i, ai ≥ bi)⇒ f(a1, . . . , ak) ≥ f(b1, . . . , bk) where ai, bi ∈ R. We also define the reverse
operators of ≤, ≥ and = to be ≥, ≤ and = respectively. When the function f is monotonically
increasing or monotonically decreasing, we have the following rules.

I Definition 10. Let p ≡ (∀θ̄ ∈ DXθ , f(t1θ̄, . . . , tkθ̄) C f(t1θ̄′, . . . , tkθ̄′)) be a predicate where
C ∈ {≤,≥,=} is a comparison operator and B is the reverse operator of C.

Increasing decomposition: when f is monotonically increasing, the predicate p is replaced
by {(∀θ̄ ∈ DXθ , tiθ̄ C tiθ̄

′) | ∀i ∈ {1, . . . , k}}.
Decreasing decomposition: when f is monotonically decreasing, the predicate p is replaced
by {(∀θ̄ ∈ DXθ , tiθ̄ B tiθ̄

′) | ∀i ∈ {1, . . . , k}}.

Recall that all full assignments are functionally valid. The following theorem follows
directly the definition of monotonically increasing and monotonically decreasing functions.

I Theorem 11. The increasing decomposition and decreasing decomposition rules preserve
that Q ∧ F is a sufficient condition for betterment and implied satisfaction of P .

Utilizing the property of monotonicity, increasing decomposition and decreasing decomposi-
tion can return weaker sufficient conditions than general decomposition.

I Theorem 12. The conjunction of predicates in {(∀θ̄ ∈ DXθ , tiθ̄ C tiθ̄
′) | ∀i ∈ {1, . . . , k}}

(respectively {(∀θ̄ ∈ DXθ , tiθ̄ B tiθ̄
′) | ∀i ∈ {1, . . . , k}}) is weaker than the conjunction of

predicates {(∀θ̄ ∈ DXθ , tiθ̄ = tiθ̄
′) | ∀i ∈ {1, . . . , k}} returned by general decomposition.

Proof. A predicate (∀θ̄ ∈ DXθ , tiθ̄ = tiθ̄
′) is always a sufficient condition for both (∀θ̄ ∈

DXθ , tiθ̄ C tiθ̄
′) and (∀θ̄ ∈ DXθ , tiθ̄ B tiθ̄

′). J

By Theorems 11 and 12, rules in Definition 10 can obtain a weaker sufficient condition for the
betterment and implied satisfaction, and the general decomposition in Algorithm 1 should
be replaced by them whenever possible.
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4.3 Decomposition for Associative and Commutative Functions
In this section, we take advantage of associativity and commutativity so that the general,
decreasing and increasing decomposition can obtain even weaker sufficient conditions. An
aggregation function [17] f can take an arbitrary non-zero number of arguments, and we use
a special notation to denote it. Let t = 〈t1, . . . , tk〉, t1 = 〈t1, . . . , tj〉 and t2 = 〈tj+1, . . . , tk〉
where 1 ≤ j ≤ k, and the followings denote the same function call: f(t1, . . . , tk), f(t) and
f(t1, t2). Two common properties of aggregation functions are:

Commutativity: f(t1, . . . , tk) = f(ti1 , . . . , tik ) where {1, . . . , k} = {i1, . . . , ik}.
Associativity: f(t) = t and f(t1, t2) = f(f(t1), t2).

By commutativity, we can always permutate the arguments of f(t) so that all fixed terms
are clustered together.

I Proposition 13. Let f be a commutative function and θ ∈ DS be an assignment where
S ⊆ Z. We can always find a permutation {i1, . . . , ik} = {1, . . . , k} and partitioning
t1 = 〈ti1 , . . . , til〉 and t2 = 〈til+1 , . . . , tik〉, where 1 ≤ l ≤ k, such that f(t) = f(t1, t2)
and all fixed arguments in t are in t1.

The proof directly follows the definition of commutativity. We have the following rule for a
commutative and associative aggregation function.

I Definition 14. Let p ≡ (∀θ̄ ∈ DXθ , f(t1θ̄, . . . , tkθ̄) C f(t1θ̄′, . . . , tkθ̄′)) be a predicate where
C is an operator in {≤,≥,=}.

Aggregation: when f is commutative and associative, p is replaced by the predicate
(∀θ̄ ∈ DXθ , f(f(t1), t2)θ̄ C f(f(t1), t2)θ̄′), where all fixed terms are in t1.

The following theorem follows directly that aggregation is an equivalent transformation.

I Theorem 15. The aggregation rule preserves the invariant that Q ∧ F is a sufficient
condition for the betterment and the implied satisfaction conditions.

The aggregation rule allows decomposition to obtain weaker sufficient conditions.

I Theorem 16. Let f be a commutative and associative function. Suppose p ≡ (∀θ̄ ∈
DXθ , f(t1, t2)θ̄ C f(t1, t2)θ̄′) and p′ ≡ (∀θ̄ ∈ DXθ , f(f(t1), t2)θ̄ C f(f(t1), t2)θ̄′) such that
all fixed terms are in t1. The conjunction of predicates resulting from applying general
decomposition to p is weaker than that to p′.

Proof. After general decomposition, p is replaced by {(∀θ̄ ∈ DXθ , tij θ̄ = tij θ̄
′) | ∀j ∈

{1, . . . , k}}, while p′ is replaced by {(∀θ̄ ∈ DXθ , f(t1)θ̄ = f(t1)θ̄′)} ∪ {(∀θ̄ ∈ DXθ , tij θ̄ =
tij θ̄
′) | ∀j ∈ {l + 1, . . . , k}}. The claim directly follows from the fact that the conjunction of

{(∀θ̄ ∈ DXθ , tij θ̄ = tij θ̄
′) | ∀j ∈ {1, . . . , l}} implies (∀θ̄ ∈ DXθ , f(t1)θ̄ = f(t1)θ̄′) since all full

assignments are functionally valid. J

Similar results can also be proved for the increasing decomposition and decreasing decompos-
ition rules in Definition 10. Algorithm 2 gives decomposition rules considering the properties
of monotonicity, associativity and commutativity.

I Example 17. Suppose we want to find sufficient conditions for θ and θ′ where var(θ) =
var(θ′) = {z1, z3}. Let p ≡ (∀θ̄ ∈ DXθ ,min(θ̄[z1], θ̄[z2], θ̄[z3]) ≤ min(θ̄′[z1], θ̄′[z2], θ̄′[z3])) be a
predicate in Q. If we apply increasing decomposition to p directly, then we get

{(∀θ̄ ∈ DXθ , θ̄[zi] ≤ θ̄′[zi]) | i ∈ {1, 2, 3}} (8)

CP 2022



6:10 Exploiting Functional Constraints in Automatic Dominance Breaking

Algorithm 2 New decomposition rules
1: Let t1, t2 be a partition of arguments in t where all fixed terms are in t1
2: if f is commutative and associative and |t2| 6= 0 then
3: p← (∀θ̄ ∈ DXθ , f(f(t1), t2)θ̄ C f(f(t1), t2)θ̄′) // Aggregation
4: end if
5: Let p be (∀θ̄ ∈ DXθ , f(t1θ̄, . . . , tk′ θ̄) C f(t1θ̄′, . . . , tk′ θ̄′))
6: if f is monotonically increasing then
7: Q← Q ∪ {(∀θ̄ ∈ DXθ , tiθ̄ C tiθ̄

′) | ∀i ∈ {1, . . . , k′}} // Increasing decomposition
8: else if f is monotonically decreasing then
9: Q← Q ∪ {(∀θ̄ ∈ DXθ , tiθ̄ B tiθ̄

′) | ∀i ∈ {1, . . . , k′}} // Decreasing decomposition
10: else
11: Q← Q ∪ {(∀θ̄ ∈ DXθ , tiθ̄ = tiθ̄

′) | ∀i ∈ {1, . . . , k′}} // General decomposition
12: end if

Since the function min is commutative and associative, we can obtain

{∀θ̄ ∈ DXθ ,min(min(θ̄[z1], θ̄[z3]), θ̄[z2]) ≤ min(min(θ̄′[z1], θ̄′[z3]), θ̄′[z2])} (9)

by the aggregation rule. Then by increasing decomposition, we get

{(∀θ̄ ∈ DXθ ,min(θ̄[z1], θ̄[z3]) ≤ min(θ̄′[z1], θ̄′[z3])), (∀θ̄ ∈ DXθ , θ̄[z2] ≤ θ̄′[z2])} (10)

Note that after applying binding and deletion to (8) and (10) respectively, we obtain
θ[z1] ≤ θ′[z1]∧ θ[z3] ≤ θ′[z3] and min(θ[z1], θ[z3]) ≤ min(θ′[z1], θ′[z3]) as sufficient conditions
for p, and the former condition is stronger than the latter one.

The new derivation algorithm replaces line 14 in Algorithm 1 with Algorithm 2, and it
has the following properties.

I Theorem 18. The new algorithm always terminates.

Proof. We define a tuple (v1, v2, v3) which is the same as that of Theorem 8 except that
v2 is now the number of free function terms in Q. The values v1 and v3 decrease similarly,
while we argue that v2 also decreases in the decomposition in Algorithm 2.

When f is not commutative and associative, decomposition in lines 5 to 11 will decrease
the number of function terms, and hence v2 is also reduced.
When the function f is commutative and associative, the predicate p is written into
(∀θ̄ ∈ DXθ , f(f(t1), t2)θ̄ C f(f(t1), t2)θ̄′) by the aggregation rule, where f(f(t1), t2) is
free and f(t1) is fixed. The follow-up decomposition in lines 5 to 11 in Algorithm 2 will
decrease v2 while keeping v1 unchanged.

Hence, the termination follows directly from the fact that there is no infinite decreasing
sequence of triples of natural numbers. J

I Theorem 19. When the new algorithm terminates, the conjunction of predicates in F is a
sufficient condition for the betterment and implied satisfaction of P .

Proof. By Theorem 7, replacement, binding, deletion and general decomposition all preserve
the invariant that Q ∧ F is a sufficient condition for the betterment and implied satisfaction.
Algorithm 2 also preserve the invariant by Theorems 11 and 15. The statement holds since
Q must be empty upon termination. J
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We note that the alldifferent constraint [32], which enforces variables taking distinct
values, is commutative but not associative or monotonic. Rules in Definitions 10 and 14
are not applicable at first glance. We can decompose alldifferent(xi1 , . . . , xik ) into a set of
constraints dv =

∑k
j=1 bool2int(xij = v) and dv ≤ 1, one for each value v ∈ ∪j=1...,kD(xij ).

The variable dv is a newly introduced variable whose value is the number of variables
in {xi1 , . . . , xik} assigned value v. After decomposition, the set of constraints enjoys the
properties of monotonicity, commutativity and associativity, and thus rules in Definitions 10
and 14 are now applicable. The idea can be applied similarly to support other global
constraints like the global cardinality constraint [33, 30] and the bin packing constraint [35].
Note that global constraints are decomposed only in synthesizing the generation CSPs, and
are untouched in problem solving.

5 Experimental Evaluation

In this section, we give experimental results to show the utility of our proposal. All
experiments are run on Xeon E5-2630 2.60GHz processors. We use MiniZinc [28] as the
high-level modeling language and implement our nogood generation method by modifying2
the publicly available MiniZinc compiler with version 2.6.2. In a compiled model, we treat
constraints with the annotation “defines_var” as functional constraints, while others are
non-functional constraints that should be reified. The generated nogoods for each problem
are output as text and then appended to the MiniZinc model of the corresponding problem.

The augmented models are submitted to MiniZinc for solving using the Chuffed solver [29]
with version 0.10.4. Note that our method aims to analyze a user-defined model, not
necessarily that of the best model, and we specify the search strategies for all problems to
demonstrate the effect of the additional dominance breaking nogoods in search space pruning.
We use six benchmark problems, 20 random instances for each problem size. The models for
the following three problems are from public benchmark suites:

Talent-n. The Talent Scheduling Problem [6] is problem 039 in CSPLib [15]. Each actor
appears in several scenes and is paid a fixed cost per day if they are present. They need
to be present on location from the first scene they are in till the last scene they are in. We
need to schedule n scenes to minimize the total cost for a set of actors. The dominance
breaking constraints for manual are by Chu and Stuckey [7].
Warehouse-n. The Warehouse Location Problem [37] is problem 034 in CSPLib [15]. We
need to choose a subset of possible warehouses in different locations to supply a set of n
existing customers such that the sum of building costs for warehouses and supply costs
for customers is minimized.
Team-n-m. The Team Assignment Problem appears in MiniZinc Challenge 2018 [36].
The problem consists of n×m players, where players have different ratings and need to
be assigned to n teams. There are requests regarding which pair of players want to be in
the same team. The objective is to satisfy as many requests as possible while balancing
the total rating among all teams.

In addition to publicly available models, we also model three more problems in MiniZinc:
MaxCover-n. The Budgeted Maximum Coverage Problem [21] is a variant of the set
cover problem. There is a ground set U and a collection T consisting of n subsets of U ,
where each subset is associated with a cost ci. The goal is to find a subset of T such that

2 We modify the embedded Geas solver and use the free search option for solving the generation CSPs.
Our implementations are available at https://github.com/AllenZzw/auto-dom.
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basic manual 2-dom 3-dom 4-dom
Problem Total Total Solving Total Solving Total Solving Total
Talent-16 187.79 5929.75 189.95 192.16 130.78 148.91 256.46 1988.75
Talent-18 1575.51 7200.00 1565.89 1568.29 672.26 713.55 1864.68 5760.68
Talent-20 5013.10 7200.00 4936.18 4960.54 2856.33 2960.09 3268.72 7006.10
Warehouse-35 7200.00 N/A 10.29 52.11 8.53 2442.71 8.51 3619.87
Warehouse-40 7200.00 N/A 46.08 111.43 32.93 3652.15 32.55 3657.33
Warehouse-45 7200.00 N/A 69.41 140.92 45.45 3690.84 46.19 3694.63
Team-6-5 24.48 N/A 10.57 12.49 9.70 32.00 8.88 427.73
Team-7-5 276.84 N/A 138.88 146.15 130.71 225.19 150.83 1745.96
Team-8-5 1983.53 N/A 819.58 829.05 767.52 1024.43 724.63 5191.70
MaxCover-45 75.91 N/A 53.47 53.79 5.07 9.96 0.27 83.93
MaxCover-50 615.04 N/A 464.81 465.53 26.31 34.92 1.12 134.99
MaxCover-55 3576.98 N/A 2859.60 2860.27 78.37 91.53 2.54 199.11
PartialCover-45 2383.20 N/A 366.17 368.03 59.44 70.64 2.49 90.25
PartialCover-50 3769.26 N/A 780.80 781.73 74.86 88.45 6.86 153.90
PartialCover-55 4640.06 N/A 1769.31 1770.42 211.83 234.41 15.23 240.68
Sensor-50 156.84 N/A 138.65 139.44 94.05 108.99 57.34 297.18
Sensor-60 595.46 N/A 404.27 405.52 269.61 296.56 172.43 709.37
Sensor-70 1615.18 N/A 1144.17 1145.83 810.01 854.61 651.72 1724.70
Table 1 Comparison of solving time for the basic, manual and L-dom methods.

the union covers the maximum number of elements subject to the constraint that the
total cost does not exceed a given budget. The search strategy is to select the unfixed
subset in T with the smallest cost first.
PartialCover-n. The Partial Set Cover Problem [20] is another variant of the set cover
problem. Given a ground set U and a collection T consisting of n subsets of U , the goal
is to find a subset of T with the minimum total cost, whose union covers at least K
elements in U . The search strategy is also to select the subset with the smallest cost first.
Sensor-n. The Sensor Placement Problem [23] is a variant of the facility location
problem [8], where we need to select a fixed cardinality subset of n locations to place
sensors in order to provide service for customers. If we place a sensor at location i, then it
provides service to a subset of reachable customers, and the service value for customer j
is Mij . Each customer chooses the facility with the highest service value from the opened
sensors, and the goal is to maximize the total service value. The search strategy is to
select the unfixed location with the highest service value to the set of customers that are
reachable by the sensor placed at the location.

Note that the original method by Lee and Zhong [25] can handle none of the benchmarks
effectively because of nested function calls in either the objective or constraints. For all
benchmarks, we attempt to generate all dominance breaking nogoods of length up to L
(L-dom), and compare our method to the basic problem model (basic) and the model with
manual dominance breaking constraints (manual) whenever they are available. The timeout
for the whole solving process (nogood generation + problem solving) is set to 7200 seconds,
while we reserve at most 3600 seconds for nogood generation and use the remaining time for
problem solving in L-dom. If nogood generation times out, we augment the problem model
with all nogoods generated before the timeout.

In Table 1, we report the geometric mean of the problem solving time (Solving) and
the total time (Total) for all benchmarks, where “N/A” in the manual column indicates
that there are no dominance breaking constraints for the problem. We first compare the
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problem solving time of L-dom against basic to evaluate the usefulness of the generated
nogoods, and we observe that the generated dominance breaking nogoods can significantly
reduce the solving time in all benchmarks. As the maximum nogood length L increases and
more generated nogoods are added to the problem model, the solving time is usually shorter
except for Talent-n. We note that the solving time of 4-dom is larger than that of 3-dom
for Talent-n due to the overhead caused by a large amount of generated nogoods of length 4.

We also compare the total time (generation time + solving time) of L-dom against basic
and manual. For each set of benchmarks, we highlight the fastest time in bold. We observe
that the nogood generation time of L-dom increases with the maximum nogood length L of
the generated nogoods, and there is a trade-off between search space pruning and generation
time. The optimal nogood length depends on the problem structure. For Warehouse-n and
Team-n-m, 2-dom is the best and reduces up to 99.27% and 58.20% less time than basic
respectively. In Talent-n, MaxCover-n, PartialCover-n and Sensor-n, 3-dom usually comes
on top, and the percentage decrease in runtime is up to 54.71%, 97.44%, 96.95% and 80.48%
respectively compared with basic. The performance gain of L-dom in problem solving
usually outweighs the generation time in a range of problems when the maximum length L
of nogoods is set appropriately.

We note that the solving time of manual is even larger than that of basic in Talent-n.
Expressing manual dominance breaking for Talent-n in the MiniZinc model requires additional
variables and introduces overheads for propagation. Chu and Stuckey [7] implement the
manual dominance breaking constraints in Chuffed, which requires sophisticated and bespoke
techniques to reduce the overhead. The generated nogoods by our method only involve
variables in the original model, and they can be posted in the high-level modeling language
without modifying the backend solver.

6 Discovering Dominance Relations

Our method, which is based on that of Lee and Zhong [25, 24] attempts to generate all
dominance breaking nogoods before problem solving, and sometimes the number of nogoods
is so large that generating all nogoods will cost too much time for each problem instance.
We observe that nogoods are the most basic units of constraints. Every high-level constraint
can be decomposed into a group of nogoods, and vice versa. By examining the patterns
of the generated nogoods, we could discover the embedded high-level dominance breaking
constraints. We give two case studies in this section.

The first case study is the Still Mill Slab Design Problem [19], which is problem 039 in
CSPLib [15]. The problem is to assign colored production orders with different sizes to slabs
where each slab has a finite number of possible sizes. The total size of orders assigned to a
slab cannot exceed the chosen slab size, and each slab cannot contain orders with more than
2 colors. The loss of each slab is the difference between the chosen slab size and the total
size of orders assigned to the slab, and the objective is to minimize the total loss of all slabs.

Previous works study different classes of symmetries, one of which is order symmetries [12],
that is, two orders with identical size and color are equivalent. We apply our method to
generate nogood of length 2 for the model from MiniZinc Challenge 2017 [36], which introduces
one variable xi to specify the slab that orders i is assigned to. The generation always times
out within 3600 seconds, and the overhead always outweighs the benefit. Although a single
nogood means relatively little, a bunch of them together can derive a meaningful constraint
collectively. However, we investigate the semantics of nogoods and discover a new class
of symmetries. By generating the nogoods of length 2, we observe that we can group all
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Figure 1 Solving time comparison with/without new symmetry breaking constraints in Steel
Mill Slab Design Problem

nogoods involving the same set of variables and find that for some pairs of orders i and j,
the nogoods are xi 6= vi ∨ xj 6= vj for all vi ∈ D(xi), vj ∈ D(xj) s.t. vi > vj , which can be
combined into one single inequality constraint xi ≤ xj . These symmetry breaking constraints
force the order i to be on a slab whose index is less than or equal to the slab index of order
j when orders i and j are equivalent. The surprise is that two orders are identical not only
when they have the same size and the same color, but also when they have the same size
and their colors are unique. To the best of our knowledge, previous studies never reveal and
exploit such a symmetry relationship.

We take a constraint model of the steel mill slab design problem from a public benchmark
suite3 and augment it with constraints to break the newly discovered symmetry relationship.
Figure 1 shows the solving time for all 380 instances from the steel mill slab library4, and
the dots below the diagonal line represent the instance benefiting from the newly discovered
constraints. We observe that the solving time is reduced in the majority of cases, especially
more so when the solving time of the original model requires more than 10 seconds. The
hard instances are represented by dots in the shaded region in Figure 1. Note that both
axes are in log scale, and the speed-up of new constraints is up to two orders of magnitude.
Several outliers require substantially more solving time after adding the new symmetry
breaking constraints. This is due to the conflict between the search heuristic and the static
symmetry breaking constraints [13]. We believe the solving time can be reduced further by
using dynamic symmetry breaking methods such as SBDS [14] or SBDD [9].

The other case study is the Balanced Academic Curriculum Problem [5], which is problem
030 in CSPLib [15]. There are n courses each associated with several credits representing the
effort required to complete the course, and courses need to be assigned to academic periods
subject to the course prerequisite constraints. The workload of each period is the sum of all
credits of courses that are assigned to the period. The objective is to minimize the maximum
academic load for all periods to balance the loads among academic periods.

3 https://github.com/MiniZinc/minizinc-benchmarks/tree/master/steelmillslab
4 http://becool.info.ucl.ac.be/steelmillslab



J. H. M. Lee and A. Z. Zhong 6:15

basic manual 2-dom 3-dom 4-dom
Problem Total Total Solving Total Solving Total Solving Total

Curriculum-60 61.82 23.76 27.80 77.44 21.88 3667.22 20.45 3673.27
Curriculum-65 291.35 62.14 71.26 160.95 62.57 3779.78 66.41 3785.61
Curriculum-70 518.31 133.54 148.84 242.62 126.19 3836.27 126.23 3837.26
Table 2 Comparison of solving time for the Balance Academic Curriculum Problem.

We perform experiments using the same experimental setting as that in Section 5 and
report the results for problems with different course numbers in Table 2. The dominance
breaking constraints for manual are by Monette, Jean-Noël et al. [27]. In general, the
problem solving time of our method is smaller than that of basic but larger than that of
manual. The overhead of L-dom mainly comes from the generation of dominance breaking
nogoods before solving the COP. In addition, the dominance breaking constraints in manual
are in the form of inequalities, which can be handled more efficiently than nogoods added by
L-dom in a propagation-based constraint solver. Nevertheless, by analyzing the nogoods of
a small instance, we find that the generated nogoods of length 2 can also be combined into
inequality constraints similar to the case of the steel mill slab design problem. The inequality
constraints we consider are the same as those proposed by Monette, Jean-Noël et al. [27],
which shows that our method can also reveal dominance breaking constraints written by
experts in the literature.

7 Concluding Remarks

In this work, we generalize the framework of automatic dominance breaking to constraint
optimization problems with nested functions, where the derivation of sufficient conditions
in a generation CSP is formulated formally. We identify that common function properties
such as monotonicity, commutativity and associativity are useful in deriving weaker sufficient
conditions such that more dominance breaking nogoods can be generated. We implement the
tool for automatic dominance breaking using the MiniZinc compiler. The experimentation
shows that the tool can discover dominance breaking nogoods for COPs with more varying
objectives and constraints, and the generated nogoods are effective in pruning the search
space and reducing the time for problem solving.

Our tool can compile and synthesize the generation CSPs for problems in the MiniZinc
benchmarks5. Whether a benchmark can benefit from our method, however, cannot be
guaranteed, since solving the generation CSP may sometimes incur a large overhead, or the
generated nogoods do not help with problem solving. Our method requires a full constraint
instance to synthesize generation CSPs. The automatic detection of dominance relations from
constraint models alone is an interesting line of future work. As shown in the case studies
in Section 6, nogoods with relevant semantics can be combined into high-level constraints
that can be efficiently handled. One direction of future work is to automate the process of
deriving high-level constraints by the techniques of automatic discovery of constraint from
example solutions [3, 4], where the generated nogoods can be used as examples to learn
and discover the desired constraints. The acquired constraints can help users to further
understand the target COP and improve the efficiency of the existing models.

5 https://github.com/MiniZinc/minizinc-benchmarks
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