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Abstract

Constraint Optimization Problems (COPs) are ubiquitous and challenging in computer

science. Constraint Programming (CP), which encompasses the Branch and Bound (BnB)

algorithm augmenting with various constraint techniques, is a typical paradigm for solving

COPs. Dominance relations describe relations among solutions of COPs, where some

solutions are known to be subordinate compared to others concerning satisfiability of

constraints and/or optimality of the objective. Dominance breaking is a technique to exclude

dominated solutions from the search space and can speed up the solving time of the BnB

algorithm for many real-life problems. Identification of dominance relations in COPs,

however, usually requires a deep understanding of the problems and sometimes even

ingenuity. In this thesis, we present several contributions to automatic dominance breaking in

COPs.

First, we propose a theoretical framework to enable automatic dominance breaking for a

class of COPs consisting of efficiently checkable objectives and constraints. Constraints for

dominance breaking are usually of various forms for different problems. We overcome this

difficulty by restricting the form of constraints to be nogood constraints, which are elementary

constraints and can be handled easily in CP. Our framework formulates the generation of

dominance breaking nogoods as constraint satisfaction. We give theorems on the sufficient

conditions governing when the generated nogood constraints are valid dominance breaking

constraints in COPs. Experimentation on a diversified set of benchmarks confirms the effec-

tiveness of automatically generated nogoods, which compares favorably against manually

identified dominance breaking constraints both in efficiency and ease of use.
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Second, we further extend the applicability and improve the efficiency of the proposed

framework with two theoretical and practical innovations. Our first innovation opens up

possibilities to apply automatic dominance breaking on COPs with non-efficiently checkable

constraints. We give conditions on when and how non-efficiently checkable constraints

can be ignored in nogood generation, and yet our method still produces sufficient useful

dominance breaking nogoods for solving COPs. The second innovation identifies redundant

and useless dominance breaking nogoods in solving COPs. The constraint satisfaction

problems for nogood generation are strengthened using the notion of Common Assignment

Elimination to avoid generating nogoods that are redundant with respect to others, and

thus the nogood generation time is reduced substantially. Our experimental results confirm

the enhanced applicability of our theory-backed innovations, which allow us to tackle

previously impractical benchmarks.

Third, we enable automatic dominance breaking for COPs containing nested function

calls. Such COPs are usually transformed into normalized COPs with introduced variables

and functional constraints. We generalize the theory of dominance to normalized COPs

and propose a rewriting system for automatic derivation of sufficient conditions in no-

good generation based on functional constraints and their properties such as monotonicity,

commutativity, and associativity. Experimentation on various benchmarks confirms the effi-

ciency of the generated nogoods to solve problems with ineffective or no known dominance

breaking constraints. Even when nogoods are costly to generate, we give case studies to

show how we discover new dominance (symmetry) breaking constraints by recognizing the

nogood patterns of small instances.

The proposed framework also sharpens our understandings of dominance breaking

methods. We give case studies on various COPs comparing the strength of the dominance

breaking constraints given in the literature with the generated dominance nogoods, and

demonstrate the generality of our proposed framework.
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摘要

約束優化問題在計算機科學中常見且充滿挑戰性的問題。約束規劃在分支定界算法上加入各

種束技術，是解決約束優化問題的典型方法。其中，約束優化問題中的支配關係描述了問題

解之間的關係，其中一些解與其他解相比在約束的可滿足性和/或目標函數的最優性的比較

上是次優的。通過添加額外的約束，支配破除這項技術可以利用支配關係來消除次優的賦

值。在許多現實問題中，支配破除可以通過大幅減小搜索空間來加快分支定界算法的求解時

間。然而，識別約束優化問題的支配破除約束通常需要對問題有深入的了解，有時甚至需要

獨創性的想法。在本論文中，我們對約束優化問題中對自動支配破除做出了一些貢獻。

首先，我們針對一類由可被有效檢查的目標函數和約束組成的約束優化問題提出了一個

理框架以實現自動支配破除。支配破除通常需要在問題中加入支配破除約束，主要困難在於

針對不同的問題有這樣的約束有不同的形式。我們通過將約束的形式限制為衝突約束來克服

這個困難。它們在約束規劃中是基本的約束並且可以很容易地處理。我們提出的理論框架是

首次在一類約束優化問題中實現自動支配破除。它將支配關係的識別有系統地表達成尋找一

對部分賦值的約束滿足問題。我們給出定理來確定一個賦值支配另一個賦值的充分條件。被

支配的部分賦值的否定語句就是支配破除衝突。通過對一組多樣化基準測試問題的實驗，我

們證實了自動生成的衝突約束的有效性。它們在效率和易用性上都優於人工識別的支配破除

約束，並且在求解時間上（包括衝突約束的生成和問題求解的時間）有幾個數量級的加速。

其次，我們通過兩個理論和實踐的創新進一步擴展了所提出框架的適用性並提高了效

率。我們的第一個創新讓自動支配破除可以應用到具有非可被有效檢查的約束的優化問題

上。我們給出了關於何時以及如何在衝突約束的生成過程中忽略不可被有效檢查的約束，而

同時我們的方法仍然會產生足夠有用的衝突約束。第二項創新指出了在解決約束優化問題時

多餘和無用的支配破除衝突約束。我們通過共同賦值移除的概念加強了衝突約束生成的可滿
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足問題，從而大大減少了衝突約束的生成時間。我們的實驗結果證實了我們的這一有理論支

持的方法的增強適用性，這使我們能夠解決原本不可解決的基準測試問題。

第三，我們令自動支配破除的方法可以應用到包含嵌套函數調用的約束優化問題。這樣

的約束優化問題通常會轉換為具有引入變量和功能約束的標準化優化問題。我們將我們的理

論框架推廣到歸一化的約束優化問題，並提出了一個自動化重寫系統用於基於函數式約束及

其單調性、交換性和關聯性等屬性自動推導生成衝突約束的充分條件。對各種基準的實驗證

實了生成的衝突約束可以有效求解具有無效或沒有已知的支配破除的問題。即使生成衝突約

束的成本較高的時候，我們也提供案例研究來展示我們如何通過識別小問題實例中的衝突約

束來發現新的支配（對稱）破除約束。

我們所提出的框架還加深了我們對手動得出的支配性破壞約束的理解。我們給出了關於

各種約束優化問題的案例研究，比較了文獻中的支配破除約束與生成的支配破除衝突約束的

強度，並證明了我們提出的框架的普適性。
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Chapter 1

Introduction

Constraint Optimization Problems (COPs) are ubiquitous in practice, and their applications

include scheduling [7, 46, 48], planning [15, 22, 48], transport routing [14, 61, 75, 76], etc.

Constraint Programming (CP) is a classical pillar of artificial intelligence and a typical

approach for solving COPs. Modern constraint solving technology allows users to specify a

problem in the form of a constraint model consisting of a set of variables, a set of constraints,

and possibly an objective function to be optimized, and the model is submitted to a constraint

programming solver, which returns solutions by the backtracking search augmented with

various constraint techniques. Such a problem-solving method takes us one step closer to

the Holy Grail of Computer Science [37, 38]: the user states the problem, the computer

solves it.

The efficiency of the search algorithm depends highly on structural properties of COPs,

among which the existence of dominance relations is of practical importance. Dominance

relations are relations over the set of assignments, i.e. the value combinations assigned to

variables of COPs. If one set of assignments dominates another, the latter is known to be

subordinate to the former with respect to the satisfaction of constraints and the objective

value. When solving COPs, we are only interested in optimal solutions with the best

objective value, and dominance breaking is a method to exclude dominated assignments from

the search space of COPs in order to improve the solving efficiency.
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Example 1. Consider the 0-1 knapsack problem where there is a set of items and a knapsack with

a capacity limit W. Each item has a weight and a profit. The problem requires to select a subset of

items with the maximal total profit subject to the constraint that the total weight of chosen items

cannot exceed W. The following gives an example model for a problem instance, where xi takes the

value 1 if and only if item i is chosen.

maximize 3x1 + x2 + 6x3 + 4x4

subject to x1 + 2x2 + 3x3 + 4x4 ≤ 5

xi ∈ {0, 1} for i = 1, . . . , 4

(1.1)

We can observe that the first item has 3 units of profit and 1 unit of weight, while the second item

has 1 unit of profit and 2 units of weight. Suppose there is a subset T1 includes the second item and

excludes the first one. We can always replace the second item with the first one to obtain another

subset T2 with a larger total profit but less total weight. If T1 is feasible, then T2 is also feasible with

a better objective value. Therefore, T1 must not be an optimal solution that should have the maximum

total profit. By a similar reasoning process, if a solution include the fourth item and exclude the

third item, then the solution must not be an optimal solution. We can formulate the statements as

dominance breaking constraints and add them to the COP without changing the optimal objective

value of the COP as follows.

maximize 3x1 + x2 + 4x3 + 6x4

subject to x1 + 2x2 + 4x3 + 3x4 ≤ 5

x1 ≥ x2, x4 ≥ x3

xi ∈ {0, 1} for i = 1, . . . , 4

(1.2)

Note that the additional constraints x1 ≥ x2 and x4 ≥ x3 can make some suboptimal solutions of

(1.1) become infeasible in (1.2). For example, the subset choosing the first and the fourth item is a

solution for (1.1), while it violates x1 ≥ x2 and x4 ≥ x3. Therefore, dominance breaking constraints

reduce the search space of a COP.

As shown in Example 1, constraints for dominance breaking can prune solutions without

3



giving any bounds on the objective value. Instead, some assignments are proved to be subop-

timal, since they are dominated by others concerning the objective value and the satisfiability

of constraints. The additional constraints characterize some useful properties of solutions

with the optimal objective value, and dominated solutions violating these constraints will

be pruned in the BnB algorithm. A wealth of research works apply dominance breaking

in solving COPs in practice, and empirical evidence shows that dominance breaking can

dramatically reduce the search space and speed up the solving process [55, 70, 71, 3, 106, 97].

Dominance breaking is powerful, but it usually takes mathematical wit and tricks to

identify opportunities and derive constraints for dominance breaking. It is even more

difficult to determine the compatibility of dominance breaking constraints, i.e. whether

more than one dominance breaking constraints can be added to the problem simultaneously

or not [24]. Additional techniques are required to select a subset of dominance breaking

constraints to prune suboptimal solutions as many as possible, while the optimal objective

value of a COP is preserved.

The success of past research often requires sophisticated insights into problem structures,

and the methods for dominance breaking are problem-specific and non-trivial to transfer

from one problem domain to another. There are few works [23, 92] on generic methods for

identifying and exploiting dominance relations in COPs, but they still rely on manual and

sophisticated derivation, and require insights into the problems.

1.1 Contributions

This thesis presents a formal framework to automate the process of dominance breaking and make it

accessible to even non-experts of constraint programming. Our contributions are composed of

three parts. First, we present the theory to formulate the derivation of dominance breaking

nogood constraints mechanically as constraint satisfaction for a class of COPs consisting of

efficiently checkable (EC) objectives and constraints. We also give practical implementations

and empirically demonstrate the effectiveness of our proposed method in reducing the

search space for solving various COPs. Second, we provide optimization techniques in order
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to extend the applicability of the framework for more problems. In particular, we relax the

restriction that requires all constraints to be efficiently checkable and improve the efficiency

of nogood generation by adding additional constraints to avoid generating useless nogood

constraints. Third, we further generalize the framework to COPs consisting of various

objective and constraints with nested function calls, which are usually flattened/normalized

into functional constraints. We present an automated method that exploits the properties of

functional constraints to derive constraints in the problem for nogood generation. Our work

in this thesis can provide deeper understanding on dominance relations. We also compare

the strength of generated dominance breaking and enable dominance breaking to be applied

in more COPs.

1.2 Thesis Outline

The rest of this thesis is organized as follows.

Chapter 2 provides basic backgrounds in constraint programming and dominance

relations. We give formal definitions of constraint satisfaction and optimization problems

and explain the core concepts, including branch and bound search, constraint propagation,

and nogood constraints in constraint programming. Next, we review basic definitions in

relational mathematics, based on which we define dominance relations in COPs. We also

describe the method of dominance breaking with the help of examples.

Chapter 3 gives the main and recent works on the identification of dominance relations

and nogood generation, and also relevant works on static and dynamic dominance breaking

methods in constraint programming.

The remaining chapters introduce the main parts of our contributions.

Chapter 4 gives a formal framework for generating dominance breaking constraints

for a class of COPs. The key difficulty in generating dominance breaking constraints is

that they are in different forms for different problems. To overcome this difficulty, we

propose to generate constraints only in the form of nogood constraints derived from the

negation of dominated assignments in COPs. We give theorems to prove the soundness
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of our method by giving sufficient conditions of when an assignment dominates another

and when multiple generated nogood constraints are compatible based on the objective and

constraints.

Chapter 5 extends the applicability of the framework of automatic dominance breaking

with two theoretical and practical innovations. First, we relax the restriction that all

constraints in a COP are required to be efficiently checkable and formally prove when

and how to ignore non-EC constraints in nogood generation. Second, we identify that

some generated nogoods make no contributions to search space reduction in a constraint

programming solver, and propose the notation of common assignment elimination to ban the

generation of such fruitless nogoods, thus speeding up the generation process substantially.

Chapter 6 proposes to exploit functional constraints to identify useful dominance rela-

tions in COPs with nested function calls. We generalize the theory of automatic dominance

breaking to normalized COPs that contain functionally defined variables and functional

constraints, and present a rewriting system to derive sufficient conditions automatically

for dominance relations in COPs based on functional constraints and common functional

properties such as monotonicity, commutativity and associativity. We also show how to

use automatically identified nogood constraints to construct more compact constraints for

dominance breaking.

At the end of Chapters 4 to 6, experimentation on various COPs demonstrates the

effectiveness of our proposals and the efficiency gained by the addition of automatically

generated dominance breaking constraints. To formally investigate the generality of our

framework, we give case studies in Chapter 7 to compare the logical strength of the generated

nogood constraints with existing dominance breaking constraints derived manually in the

literature. In Chapter 8, we conclude the thesis and discuss possible directions for future

works.
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Chapter 2

Background

In this chapter, we give preliminaries in constraint satisfaction and optimization, constraint

programming, and dominance relations in constraint optimization problems.

2.1 Constraint Satisfaction and Optimization

A Constraint Satisfaction Problem (CSP) P is a tuple (X, D, C) consisting of a finite set of

variables X = {x1, . . . , xn}, a mapping D from a variable x ∈ X to its finite domain D(x)

and a set of constraints C. A literal of P = (X, D, C) is of the form xi = vi where xi ∈ X

and vi ∈ D(xi). An assignment θ over a set of variables S ⊆ X is a set of literals that has

exactly one literal for each variable xi ∈ S, where S = var(θ) is the scope of θ. We use θ̄ to

emphasize that an assignment is a full assignment whose scope is X, or it is otherwise a partial

assignment. Let θ[xi] = vi denote the value assigned by θ to variable xi ∈ var(θ) if the literal

(xi = vi) ∈ θ, and we also let θ[S′] = {(xi = vi) ∈ θ | xi ∈ S′} to denote the projection of an

assignment θ over a set of variables S′ ⊂ var(θ). We also define DX
θ = {θ̄ ∈ DX | θ̄↓S= θ}

as the set of full assignments extending from a partial assignment θ ∈ DS where S ⊆ X.

A constraint c ∈ C is a set of assignments over variables in a set var(c). An assignment

θ satisfies a constraint c if and only if var(θ) ⊇ var(c) and θ[var(c)] ∈ c. A solution of a

CSP P = (X, D, C) is a full assignment that satisfies all constraints in C. If the set of all

solutions sol(P) is non-empty, then P is satisfiable. A nogood constraint derived from θ is
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a constraint of the form ¬θ ≡ ∨x∈var(θ)(x 6= θ[x]), and its length is equal to the scope size

|var(θ)|. A decision for a variable x ∈ var(θ) in a nogood constraint ¬θ is the literal x = θ[x].

A decision for a variable x is subsumed if and only if D(x) = {θ[x]} and is falisified if and

only if θ[x] /∈ D(x).

Let DX be the set of all full assignments in P. A Constraint Optimization Problem

(X, D, C, f ) extends a CSP with an objective function f : DX 7→ R. Without loss of generality,

solving a COP is to find an optimal solution θ̄opt such that θ̄opt ∈ sol(P) and f (θ̄opt) ≤ f (θ̄′)

for any other solution θ̄′ of P. In other words, the objective function is minimized.

Example 2. Consider a COP P = (X, D, C, f ) where X = {xi | i = 1, . . . 4}, D(xi) = {0, 1, 2}

for i ∈ {1, 2, 3, 4}, and C = {3x1 + 2x2 + 3x3 + x4 ≥ 6, x1 6= x3, x2 < x4}. The objective function

f is x1 − 4x2 + 3x3 − 5x4. The constraint c ≡ (x1 6= x3) is over the scope {x1, x3} and can be

represented explicitly as a set of assignments consisting of {x1 = 0, x3 = 1}, {x1 = 0, x3 = 2},

{x1 = 1, x3 = 0}, {x1 = 1, x3 = 2}, {x1 = 2, x3 = 0}, and {x1 = 2, x3 = 1}. The full assignment

θ̄ = {x1 = 0, x2 = 1, x3 = 0, x4 = 0} is not a solution since it violates the constraint c, i.e.

θ̄[{x1, x3}] = {x1 = 0, x3 = 0} /∈ c. Another full assignment θ̄′ = {x1 = 1, x2 = 2, x3 = 0, x4 =

0} is a solution of the problem and has the objective value f (θ̄′) = 1− 4× 2 + 2× 0− 5× 0 = −7.

The optimal solution for P is θ̄opt = {x1 = 1, x2 = 1, x3 = 0, x4 = 2} which has the smallest

objective value −13.

2.2 Constraint Programming

Constraint programming (CP) is a paradigm for solving constraint satisfaction and optimiza-

tion problems. In this section, we introduce the Branch and Bound (BnB) algorithm and

constraint propagation in constraint programming. We also discuss nogood constraints

which are closely related to the framework of automatic dominance breaking.
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2.2.1 Branch and Bound

CSPs and COPs are usually NP-hard. To find a solution of a CSP P, the problem is

usually branched into several subproblems {P1, . . . , Ps} by splitting the domain in such

a way that sol(P) = sol(P1) ∪ · · · ∪ sol(Ps). In this thesis, we consider binary branching in

which a problem is divided into two subproblems Pl = (X, Dl , C) and Pr = (X, Dr, C). The

domain Dl and Dr are the same as D except for one variable x, where Dl(x) = {v} and

Dr(x) = D(x) \ {v}. We call x the branching variable and v ∈ D(x) is the branching value.

Example 3. Consider the CSP P0 = (X, D0, C) derived from the COP in Example 2 without the

objective function where D0 is the initial domain without splitting. Figure 2.1 shows the branching of

P0 into subproblems Pl and Pr by selecting x1 as the branching variable and 0 as the branching value.

The domains Dl and Dr are the same as D0 except that Dl(x1) = {0} and Dr(x1) = {1, 2}. The

subproblems Pl and Pr can be further branched into subproblems by selecting a branching variable or

a branching value from the domain of the next branching variable.

P0 = (X, D0, C)

Pr = (X, Dr, C)Pl = (X, Dl , C)

x1 = 0 x1 6= 0

Figure 2.1: The branching of a constraint satisfaction problem

The branching process can be structured as constructing a search tree T = (P , E), where

P is a set of CSPs as the nodes in the tree, and the original CSP P0 is the root node. When

there is an arc (P, P′) ∈ E , P′ is generated from P by a branching, and we say that P′ is

a child of P. Each problem P = (X, D, C) ∈ P is associated with a partial assignment θ if

and only if for all variables xi ∈ var(θ), D(xi) = {θ[xi]}. A node P is a failure node if either

D is a domain with D(x) = ∅ for some variable x ∈ X or a constraint is violated by the
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associated partial assignment of P. A node P is a solved node if it is not a failure node and

D is a singleton domain such that |D(x)| = 1 for all variables x ∈ X. A leaf node is either a

failure node or a solved node.

In constraint programming, the branch and bound algorithm solves a COP as a series

of CSPs with decreasing bars for the objective value. An objective variable, say obj, is

defined and linked to the objective function. Whenever a solution is found, a bounding

constraint obj < v is added where v is the objective value of the newly found solution. This

effectively construct a new CSP which only search for a solution with a better objective

value. The process is repeated until no solutions can be found for the last CSP, which proves

the optimality of the latest solution. The search tree is usually traversed by the depth first

search, in which the search algorithm performs the following operations at each node:

1. If the current node is a failure node, then return.

2. If the current node is a solved node, then add a new bounding constraint and return.

3. Otherwise, the current node is a non-leaf node, and then:

(a) Generate the left child node and recursively traverse the left subtree

(b) Generate the right child node and recursively traverse the right subtree

Example 4. Figure 2.2 shows a partial search tree for the COP P = (X, D0, C, f ) in Example 2

using the BnB search algorithm, where failure nodes and solved nodes are highlighted in red and blue

respectively. Initially, a CSP P0 = (X ∪ {obj}, D0, C ∪ {cobj}) is constructed from the COP as the

root node of the search tree, where cobj ≡ (obj = x1 − 4x2 + 3x3 − 5x4) is the constraint to link the

newly defined variable to the objective function f . Each non-leaf node has exactly two child nodes,

and each edge is labelled by the branching decision. The indices of the subproblems follow the order

in which the nodes are visited. We give the description of the first several steps of the BnB search

process as follows:

1. The search starts from the CSP P0. It is neither a failure node nor a solved node, and the left

child node P1 = (X ∪ {obj}, D1, C ∪ {cobj}) is generated such that D1(xi) = {0, 1, 2} for
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P0

...P1

...P2

P4

P10

P12

P14P13

x4 = 1 x4 6= 1

P11

x4 = 0 x4 6= 0

P5

P7

P9P8

x4 = 1 x4 6= 1

P6

x4 = 0 x4 6= 0

x3 = 1 x3 6= 1

P3

x3 = 0 x3 6= 0

x2 = 0 x2 6= 0

x1 = 0 x1 6= 0

Figure 2.2: A partial search tree for the example COP
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i = 2, 3, 4 and D1(x1) = {0}.

2. The branching process repeats and the subproblems P2 and P3 are generated. When visiting P3,

it associates with a partial assignment θ3 = {x1 = 0, x2 = 0, x3 = 0}. Since the constraint

x1 6= x3 is violated by θ3, P3 is a failure node.

3. The search is backtracked to P2, and the right child node P4 = (X, D4, C) is generated such

that D4(x1) = D4(x2) = {0}, D4(x3) = {1, 2} and D4(x4) = {0, 1, 2}. We select x3 as the

next branching variable and 1 as the branching value to generate the subproblem P5.

4. The search continues to generate and visit subproblems P5, P6, P7 and P8. The assignment

θ̄6 = {x1 = 0, x2 = 0, x3 = 1, x4 = 0} associated with P6 violates the constraint x2 <

x4, and the assignment θ̄8 = {x1 = 0, x2 = 0, x3 = 1, x4 = 1} violates the constraint

2x1 + 2x2 + 3x3 + x4 ≥ 5. Therefore, both P6 and P8 are failure nodes.

5. The next subproblem P9 = (X ∪ {obj}, D9, C ∪ {cobj}) is a solved node since the domain

of all variables are singleton, and no constraints are violated. We have found a solution

θ̄9 = {x1 = 0, x2 = 0, x3 = 1, x4 = 2} for the original problem, and the objective value is

f (θ̄9) = 0− 4× 0 + 3× 1− 5× 2 = −7. A bounding constraint obj < −7 is added to

enforce future solutions to have smaller objective value.

6. The search is backtracked to P4 and its right subtree is visited. There are three failure nodes in

the subtree under P10. The subproblem P11 is a failure node since its associated assignment

violates x2 < x4 similarly as P6. The assignments associated with P13 and P14 are {x1 =

0, x2 = 0, x3 = 2, x4 = 1} and {x1 = 0, x2 = 0, x3 = 2, x4 = 2} respectively. They do not

violate any constraint in the original constraint set C, but their objective values are larger than

−7, which violates the bounding constraint added in P9. Therefore, P13 and P14 are also failure

nodes, and the search is backtracked without adding new bounding constraints.

2.2.2 Constraint Propagation

An important constituent of constraint programming is constraint propagation, which tightens

the domain by removing inconsistent values that can no longer be part of any solution. In
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this way, some subtrees containing no solutions can be removed directly without exploration.

In a constraint programming solver, each constraint c has a propagator to remove values

from D(x) for all variables x ∈ var(c). Formally, a domain D1 is stronger than a domain D2,

written D1 v D2, if D1(x) ⊆ D2(x) for all variables x. A propagator prop is a monotonically

decreasing function mapping domains to domains; that is, prop(D) v D for all domains

D, and D1 v D2 implies that prop(D1) v prop(D2). A propagator prop1 is stronger than

another propagator prop2 if prop1(D) v prop2(D) for all domains D.

A propagator usually maintains a consistency notation which is a condition on domains

with respect to constraints. There are many kinds of consistency notations, among which

the most common one is arc consistency (AC) for a binary constraint over a scope var(c) =

{xi1 , xi2} consisting of two variables. Arc consistency requires that for each value v1 ∈ D(xi1),

there is a value v2 ∈ D(xi2) such that the assignment {xi1 = vi1 , xi2 = vi2} ∈ c. Arc

consistency can be extended to generalized arc consistency (GAC) [90] for constraints with

more than two variables. The domain of a COP P = (X, D, C, f ) is in GAC for a constraint

c ∈ C if for every xij ∈ var(c) and v ∈ D(xij), there exists a full assignment θ̄ ∈ DX such

that θ̄[xij ] = v and θ̄ satisfies c.

Example 5. Consider the problem in Example 2 and the constraint x2 < x4. To enforce GAC on

the domain, the propagator for x2 < x4 removes 2 from D0(x2) since no values in D0(x4) is strictly

larger than 2. Similarly, the value 0 can be removed from D0(x4), and the domain of the problem

becomes D0(x1) = D0(x3) = {0, 1, 2}, D0(x2) = {0, 1}, and D0(x4) = {1, 2}.

In BnB search, whenever a node P is generated, we enforce consistency and remove

values from the domain of P by a constraint propagation algorithm, which repeatedly triggers

propagators of all constraints in P until a fix point in which no propagators can further

remove values from the domain. Algorithm 1 shows a classical constraint propagation

algorithm called AC-3 [89] to enforce AC for a binary constraint problem, and it can be

extended to enforce GAC for arbitrary constraints [118]. The algorithm starts with initializing

the active constraint set Q to be the set C of all constraints. In each iteration, a constraint c is

removed from Q and its associated propagator is executed to detect and remove inconsistent
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Algorithm 1 AC-3/GAC-3
Input: a CSP P = (X, D, C)

1: Q← C
2: while Q is not empty do
3: Choose and remove a constraint c from Q
4: D′ ← Propagate(c, D)
5: if ∃x ∈ X, D′(x) 6= D(x) then
6: X′ ← {xi | xi ∈ var(c) where D′(xi) 6= D(xi)}
7: Q← Q ∪ {c′ ∈ C \ {c} | X′ ∩ var(c) 6= ∅}
8: D ← D′

9: end if
10: end while

values, which returns a potentially updated domain D′ (line 4). If D′(x) 6= D(x) for some

variable x, some values must have been removed, and the consistency for a constraint c

with x ∈ var(c) may no longer hold. Therefore, all constraints involving x are added to

Q and the domain D is updated to D′ before the next iteration (line 6-8). The iteration

continues until Q is empty. The naive implementation of the AC-3 algorithm has the

worst-case time complexity O(|C|d3), where d = maxxi∈X D(xi). The GAC-3 algorithm is

known to run in O(|C|r3dr+1) time and O(|C|r) space to enforce GAC on the domain, where

r = maxc∈C |var(c)| is the largest arity, i.e. the number of variables in a constraint. The

incremental version of AC-3, which is called AC-3.1 [132], can improve the time complexity

to O(|C|d2) by a more fine-grained implementation, and the time complexity of GAC-3.1 is

O(|C|r2dr) [13]. After the execution of the constraint propagation algorithm, the updated

domain must be in AC/GAC for every constraint c ∈ C.

Example 6. Consider the partial search tree in Figure 2.2. The values are removed by constraint

propagation, and therefore the search will not explore some subtrees without solutions. Initially, the

domain D0 is reduced by the propagator of x2 < x4 as shown in Example 5. No propagators of other

constraints further remove values in the constraint propagation at P0. At the node P1, the domain

D1(x1) = {0}, and 0 is removed due to the constraint x1 6= x3. Hence, the node P3 will not be

generated and visited. Similarly, D2(x2) = {0} at node P2, and 0 is removed from D2(x4) by the

propagator of x2 < x4. The search will not generate and visit the subproblem P6 and P11 where the

14



P′0

P′8

P′10P′9

x1 = 1 x1 6= 1

P′1

P′5

P′7P′6

x3 = 1 x3 6= 1

P′2

P′4P′3

x3 = 1 x3 6= 1

x2 = 0 x2 6= 0

x1 = 0 x1 6= 0

Figure 2.3: The complete search tree for the example COP with constraint propagation

domain of x4 is set to {0}.

Figure 2.3 shows the complete search tree with GAC-3 executed at each search node, and the

number of nodes in the search tree is reduced significantly with constraint propagation.

2.2.3 Nogood Constraints

A nogood is a partial assignment that is not part of any solution of a COP P. An assignment

constraint for an assignment θ is the conjunction of literals in θ in the form ∧x∈var(θ)(x =

θ[x]), while a nogood constraint ¬θ ≡ ∨x∈var(θ)(x 6= θ[x]) is the negation of the assignment

constraint for θ. We say that the length of a nogood ¬θ is always equal to the scope size

|var(θ)|. A nogood constraint represents a partial assignment that is not part of any solution.

Nogood constraints are the most general forms of constraints. By definition, an arbitrary

constraint c over its scope var(c) = {xi1 , . . . , xik} is a subset of the Cartesian product

D(xi1)× · · · × D(xik) which is a set of partial assignments {θi | var(θi) = var(c) ∧ θi ∈ c}.

Note that a partial assignment θ over var(c) either satisfies c or violates it, and we can

construct a set vio(c) = {θi | var(θi) = var(c) ∧ θi /∈ c} of assignments. A full assignment

θ̄ satisfying c must have the property that θ̄[var(c)] /∈ vio(c). Thus, c is equivalent to the

conjunction ∧θ∈vio(c)¬θ of a set of nogood constraints.
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Example 7. As shown in Example 2, the constraint c ≡ (x1 6= x3) can be represented explicitly

as a set of assignments over {x1, x3}. Alternatively, we can construct the set vio(c) consisting of

{x1 = 0, x3 = 0}, {x1 = 1, x3 = 1} and {x1 = 2, x3 = 2}. The constraint c is equivalent to the

conjunction

∧θ∈vio(c)¬θ ≡ (x1 6= 0∨ x3 6= 0) ∧ (x1 6= 1∨ x3 6= 1) ∧ (x1 6= 2∨ x3 6= 2)

The domain of a COP is usually enforced to be GAC with respect to a nogood constraint.

A decision for a variable x ∈ var(θ) in a nogood constraint is an equality constraint x = θ[x]. A

decision for a variable x is subsumed if and only if D(x) = {θ[x]} and is falisified if and only

if θ[x] /∈ D(x). By definition, the domain of a COP P = (X, D, C, f ) is GAC with respect to

a nogood constraint ¬θ if and only if (a) there exists two decisions that are not subsumed,

or (b) there is one decision that is falisified. The propagator maintaining GAC for a nogood

constraint is triggered when all but one of the decisions are subsumed, and the value θ[x] is

removed from D(x) for the left decision x = θ[x].

Proposition 1. Let θ and θ̃ be two partial assignments in a COP P such that θ̃ is a subset of θ.

If prop1 and prop2 are propagators maintaining GAC for ¬θ̃ and ¬θ respectively, then prop1 is

stronger than prop2.

Proposition 1 implies that the propagator of ¬θ is propagation redundant [20] with respect

to ¬θ̃ and contributes no extra pruning in a constraint solver. Therefore, constraint propaga-

tion results in the same domain after removing ¬θ, and the runtime cost of the propagator

for ¬θ is reduced.

2.3 Dominance Relations and Dominance Breaking

In this section, we introduce some core concepts of dominance in COPs and the methods to

exploit dominance relations in constraint programming.
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2.3.1 Basic Definitions in Relational Mathematics

Given two sets M and N, a binary relation R over M and N is a set of ordered pairs (m, n)

where m ∈ M and n ∈ N. The set M is the domain of R and N is the codomain of R. A

mapping R : M 7→ N is a binary relation that associates to every element of M exactly one

element of N. A mapping R is a bijection if and only if (1) R is surjective, i.e., ∀n ∈ N, ∃m ∈ M

such that (m, n) ∈ R, and (2) R is injective, i.e., ∀(m, n), (m′, n′) ∈ R, (m 6= m′) ⇒ (n 6= n′).

We also write mRn when (m, n) ∈ R.

A relation R is a homogeneous relation over a set M if its domain and codomain are the

same. Otherwise, it is a heterogeneous relation. A homogeneous relation R is transitive when

∀m, m′, m′′ ∈ M, if (m, m′) ∈ R and (m′, m′′) ∈ R, then (m, m′′) ∈ R, and is irreflexive if and

only if ∀m ∈ M, (m, m) /∈ R. The transitive closure R+ of a homogeneous relation R over a set

M is the smallest relation over M that contains R and is transitive. In this work, we slightly

generalize the transitive closure to the heterogeneous relation R : M 7→ N by a two-step

construction: (1) construct a relation R̂ over the union M̂ = M ∪ N such that R̂ = R as a set

of ordered pairs, and (2) take the transitive closure R̂+ of R̂ over the set M̂.

2.3.2 Dominance Relations

We define a dominance relation to be a homogeneous relation over the set of all full

assignments in a COP.

Definition 1. [23] A dominance relation ≺ with respect to P = (X, D, C, f ) is a transitive

and irreflexive relation such that ∀θ̄, θ̄′ ∈ DX, if θ̄ ≺ θ̄′, then either:

1. θ̄ is a solution of P and θ̄′ is not a solution of P, or

2. both θ̄ and θ̄′ are solutions of P and f (θ̄) ≤ f (θ̄′), or

3. both θ̄ and θ̄′ are not solutions of P and f (θ̄) ≤ f (θ̄′)

In this case, we say that θ̄ dominates θ̄′ with respect to P.

17



A full assignment that is dominated by another in a dominance relation can be removed

from the solution space since it cannot be an optimal solution of P.

Theorem 1. [23] Let ≺ be a dominance relation of a COP P = (X, D, C, f ). We can prune all full

assignments θ̄′ ∈ DX whenever ∃θ̄ ∈ DX such that θ̄ ≺ θ̄′, without changing the satisfiability or

optimal value of P.

Theorem 1 is the basis of the theoretical framework proposed in this thesis, in which

we prove the soundness of automatically derived dominance breaking constraints in a COP

by showing that all full assignments satisfying the constraints are dominated by other full

assignments in a constructed dominance relation for the COP.

Note that a dominance relation should be both transitive and irreflexive. In other words,

if P is satisfiable, then there is at least one optimal solution θ̄opt of P that is not dominated

by any other solutions. For example, consider a simple COP P with one variable x and

D(x) = {0, 1}, where the objective function is constant. There are two full assignments

θ̄ = {x = 1} and θ̄′ = {x = 0} in P. Both θ̄ and θ̄′ are optimal solutions of P. Given a

dominance relation ≺ with respect to P, either θ̄ ≺ θ̄′ or θ̄′ ≺ θ̄, but not both. Otherwise, we

will have θ̄ ≺ θ̄ or θ̄′ ≺ θ̄′ by the transitive property, but it violates the irreflexive property

of a dominance relation.

The definition of dominance relations can be generalized to search nodes.

Definition 2. [23] Let D1,D2 ⊆ DX be the sets of full assignments of two search nodes for a COP

P = (X, D, C, f ). If ∀θ̄′ ∈ D2, ∃θ̄ ∈ D2 such that θ̄ ≺ θ̄′, then we say D1 ≺ D2.

By Theorem 1, if D1 ≺ D2, then we can safely prune the search node with D2 without

changing the optimal objective value.

Example 8. Consider the COP in Example 2. If we exhaust all full assignments in DX, we can

find that the optimal solution θ̄opt = {x1 = 1, x2 = 1, x3 = 0, x4 = 2}. A simple dominance

relation over DX can be constructed such that θ̄opt ≺1 θ̄ for all θ̄ ∈ DX \ {θ̄opt}. Another

possible dominance relation is that θ̄ ≺2 θ̄′ for all pairs (θ̄, θ̄′) such that θ̄[x1] = θ̄′[x3] = a,

θ̄[x3] = θ̄′[x1] = b, θ̄[x2] = θ̄′[x2] and θ̄[x4] = θ̄′[x4], where (a, b) ∈ {(1, 0), (2, 0), (2, 1)}. For
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P0
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P3P2

x2 = 0 x2 6= 0

x1 = 1 x1 6= 1

Figure 2.4: The complete search tree for the example COP with dominance breaking constraints

instance, {x1 = 0, x2 = 1, x3 = 1, x4 = 0} ≺2 {x1 = 0, x2 = 0, x3 = 1, x4 = 1}, where the former

is a solution while the latter is not a solution of P. This satisfies the first condition of Definition 1. One

can also verify that other pairs of full assignments satisfy one of the three conditions in Definition 1.

2.3.3 Dominance Breaking

Dominance Breaking is to remove solutions that are proved to be suboptimal with respect to

satisfiability and/or objective value. A dominance breaking method is sound if it leaves at

least one optimal solution in sol(P) if the COP P is satisfiable. The static method to exclude

dominated solutions is to add dominance breaking constraints in a COP that such that some

dominated solutions in sol(P) become non-solutions. Note that a constraint programming

solver will not only check the validity for a dominance breaking constraint, but also perform

constraint propagation. Values removed by dominance breaking constraints may further

trigger the propagator of original constraints in C for domain reduction.

Example 9. Consider the dominance relation ≺2 in Example 8. A full assignment θ̄′ = {x1 =

a, x2 = 0, x3 = b, x4 = 1} is dominated if (a, b) ∈ {(1, 0), (2, 0), (2, 1)}. To exclude such dominated

full assignments, we can simply add x1 ≥ x3 for dominance breaking. After adding this constraint,

Algorithm 1 will further reduce the domain of the root node to be D0(x3) = D0(x2) = {0, 1} and

D0(x1) = D0(x4) = {1, 2} after constraint propagation with the additional constraint. Figure 2.4

shows the new search tree with dominance breaking constraints, and it has fewer number of nodes
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compared with the tree in Figure 2.3.

Dominance relations can also be exploited dynamically to prune suboptimal solutions

during search, which requires more sophisticated dominance checking [63, 34] or even

modifications of the branch and bound search algorithm [21, 24]. We will discuss methods

to exploit dominance relations in more details in Chapter 3. In this thesis, we consider

the method of static dominance breaking and automate the process of deriving dominance

breaking constraints.
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Chapter 3

Related Work

In this chapter, we give the main and recent works on the identification of dominance

relations and nogood generation. We also give relevant works on static and dynamic

dominance breaking methods in constraint programming.

3.1 Identification of Dominance Relations

Dominance relations are relations over the solution set of COPs regarding the satisfaction of

constraints and the optimality of the objective. Dominated solutions are guaranteed to be

suboptimal and hence can be removed, since the aim of solving COPs are to find an optimal

solution with the best objective value. In the literature, dominance relations are usually

identified in a case-by-case manner [3, 22, 46, 55, 70, 97, 106], and there are a few attempts

to automate the identification of dominance relations in COPs. Yu and Wah [131] propose a

machine learning method to find candidate dominance relations in several combinatorial

problems. While the method can be applied to a class of problems, the generated candidate

dominance relations lack correctness guarantees and requires further manual inspection.

Fischetti et al. [31, 32] propose a local dominance procedure to detect dominance relations in

mixed integer linear programs. The idea is to identify a dominating node for a given search

node by solving an auxiliary optimization problem, either in an exact or heuristic manner,

during the BnB search. Some design choices are required for efficient implementation,

21



such as the heuristic selection of nodes to solve the auxiliary problem and the recording of

nogoods to prevent redundant solving.

Chu and Stuckey [23, 24] give the first generic method for deriving dominance breaking

constraints for COPs. The method starts with a set of candidate mappings over the solution

set, followed by the derivation of dominance breaking constraints based on sufficient

conditions for the candidate mappings to map solutions to better solutions. Manual efforts

are required to select mappings, identify sufficient conditions, and simplify the dominance

breaking constraints. Mears and de la Banda [92] automate the derivation process to a certain

extent based on automated symmetry detection, which restricts the candidate mappings to

symmetries that map solutions to solutions and map non-solutions to non-solutions. Their

method still require manual selection of symmetries produced by the automated symmetry

detection process to be effective.

Dominance relations are generalizations of symmetry relations in constraint program-

ming [52]. Symmetry relations are bijective mappings on full assignments that have the

same objective value and are both solutions/non-solutions. Dominance is a relation also

on two full assignments, but one is “better” than the other in terms of satisfiability or

objective values. Symmetry breaking can be considered as a special case of dominance

breaking by introducing, for example, the lexicographic ordering on symmetric solutions.

Given two symmetric solutions θ̄ and θ̄′ in a COP, and θ̄ is lexicographically smaller than

θ̄′. We can consider θ̄ to dominate θ̄′ in a dominance relation with respect to the COP.

Considerable progress has been made in the automatic detection of symmetry relations

in CSPs. A substantial amount of research works [27, 36, 43, 94, 109, 112] focus on the

automatic detection of symmetry relations in a CSP. While the detected symmetries can

be exploited to speed up the solution process of a CSP, the detection may introduce extra

overheads. Other works [60, 114] propose methods to detect symmetries for a class of

CSPs so that the detected model-level symmetries can be applied to all CSPs in the class.

However, they can only detect relatively “simple” symmetries like interchangeable values

and interchangeable variables. Later, Mears et al. [95, 96] proposes a method that lifts the
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detected symmetries at the instance level to the model level by an inductive reasoning

process. Symmetries can also arise as a result of modeling decisions when a single problem

solution corresponds to multiple assignments to the variables in a constraint model. The

automated constraint modeling system CONJURE [1, 2] incorporates an automated and

rule-based method to detect modeling symmetries when refining high-level specifications

into constraint models.

3.2 Nogood Generation

To improve the efficiency of the search algorithm, nogood constraints are usually used to

avoid search redundant subtrees or useless subtrees without desired solutions. Nogood

constraints can be generated from nogood learning and restarts in constraint programming.

Nogood learning is a standard technique for improving backtracking search [29], and is a

main reason for the success of propositional satisfiability (SAT) solvers. Nogood constraints,

which correspond to clauses in SAT solvers, are generated from to failures in the search

algorithm, and the first unique implication point method [98] is one of the most efficient learn-

ing schemes for analyzing the implication graph that encodes the information in constraint

propagation. Nogood learning is also incorporated in constraint programming solvers.

Katsirelos and Bacchus [65] propose generalized nogoods to include non-assignments which

corresponds to values pruned from the domain of variables. They show that generalized

nogoods are more compact than standard nogoods and can yield significant improvements

in empirical performance of constraint solvers. Later, Ohrimenko et al. [102, 103] propose

a hybrid method called lazy clause generation, which encodes domain changing behaviors

from constraint propagators as clauses inside the SAT solver. The combination of powerful

nogood learning in SAT solving and efficient propagation algorithm in constraint program-

ming results in the state-of-the-art performance in various resource constrained scheduling

problems [120, 119, 121, 74].

Restart [29, 6, 44] is a technique to make backtracking search more robust by invoking

a new run of the search algorithm with different variable and value ordering heuristic.
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Nogood constraints for restart [6, 79] encode the current explored search space to avoid

redundant search in the next run of the search algorithm. Lee et al. [80] propose a global

constraint to maintain and propagate nogoods from restarts more efficiently increasing

nogood, and Glorian et al. [56] improve the filtering algorithm by mechanisms to combine

nogoods dynamically.

3.3 Static Dominance Breaking

Static dominance breaking is a direct method to removes dominated solutions by adding

additional dominance breaking constraints, which make dominated solutions become non-

solutions, to a target COP before the BnB search. The method has been applied to speed up

the solution process for various problems [55, 107, 51, 106, 97, 72, 28, 45, 122], and we give

several example applications of static dominance breaking in recent papers. In the diameter

constrained minimum spanning tree problem, de Una et al. [28] adopt a dominance rule from

Noronha et al [101] and add dominance breaking constraints in the form of disequalities to

exclude solutions with higher cost from the search space. Gange and Stuckey [45] use the

concert hall scheduling problem as a benchmark, in which implication constraints are added

such that shorter and more profitable concerts are preferred in solutions. Senthooran et.

al [122] study a problem of training engineers for service delivery, where they add inequality

constraints in the skill allocation subproblem to favor skill addition to an engineer with a

subset of skills when compared to another engineer’s skills. In general, dominance breaking

constraints are usually of different forms for different problems, and they usually require

sophisticated insights of the problem structure.

Static symmetry breaking methods have been studied extensively in the literature.

Variable symmetries and value symmetries are two main categories, in which there exists a

permutation of variables and values respectively such that the satisfaction of constraints

are preserved. Crawford et al. [27] propose the LexLeader method to break variable

symmetries, which is a general scheme that adds symmetry breaking constraints to preserve the

lexicographically least solution of a CSP. Later, the global lexicographical ordering constraints
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are proposed with efficient consistency algorithms [16, 17, 39]. Variable symmetries often

arise in matrix models, and DoubleLex [33] is a method to break symmetries in matrix

models with a linear number of lexicographical ordering constraints, and it is observed

with good performance in practice [66] with the theoretical guarantee on upper bound of

remaining solutions in each symmetry class [62]. The classical LexLeader and DoubleLex

methods are based on the lexicographical ordering schemes, and other method with different

ordering schemes, such as the multiset ordering [41], the SnakeLex ordering [58], the

Gray code ordering [99], and the reflex ordering [83], are also proposed for breaking

variable symmetries. To break value symmetries in the graceful graph problems, Petrie

and Smith [105] adapt the LexLeader method and add appropriate lexicographical ordering

constraints. Later, global constraints [110, 128, 129, 78, 77, 45] are also proposed with

efficient propagation algorithms to handle value symmetries.

3.4 Dynamic Dominance Breaking

Static dominance breaking may not always be effective in the BnB search, since dominated

solutions may improve the objective bound and allow additional pruning of search space

in BnB. In the literature [34, 47], there are empirical evidences showing that dominance

and symmetry breaking constraints can have negative impact on the performance of the

BnB search. Theoretical study by Ibaraki [63] also shows that the removal of dominated

solutions in the BnB algorithm with depth first search is guaranteed to reduce the number

of search nodes only when the dominating solutions have been visited. Therefore, dynamic

dominance breaking methods modify the search procedure to exclude only dominated

solutions that cannot enable additional search space pruning. Most dynamic dominance

breaking methods are problem specific [22, 34, 46, 111]. For example, Focacci and Shaw [34]

give a local search method for the travelling salesman problem, which prunes the current

branch if it cannot be extended to a solution that is better than the current best solution.

There are few works on generic approaches for dynamic dominance breaking. Chu and

Stuckey propose [24] dominance jumping, where the propagators of dominance breaking
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constraints only check the validity but never prune any values from the domain. When

the BnB search reach a failure node, the search is restarted, and a temporary strategy is

used to guide the search towards another part of the search space which contains better

solutions potentially. In this way, the dominating solutions are visited first to obtain stronger

objective bounds for pruning. Another generic approach is automatic caching via constraint

projection [21], in which a caching description or a key is computed and stored for each

visited search node. Conditions on keys are given to check whether all solutions in the

current search node are dominated by solutions in a cached one. If the conditions are meet,

the current search node will not be explored to avoid redundant search.

With regard to symmetry relations, there are various methods for breaking symmetries

dynamically. The representative method is symmetry breaking during search [53, 49]. After

exploring a search node, a symmetry breaking constraint is constructed and added for each

symmetry to avoid exploring the search space that is symmetric to the visited search node.

To improve the efficiency, Mears et al. [93] propose lightweight dynamic symmetry breaking

that handles only symmetries that are common and can be compactly represented. Lee

and Zhu [81, 84] identify the missing pruning opportunities in partial symmetry breaking

during search and propose recursive symmetry breaking during search. Later, they also

propose a global constraint to reduce the propagation overhead for a sequence of increasing

nogoods [82]. Another typical dynamic symmetry breaking method is symmetry breaking

via dominance detection [30, 108]. The method implements a specific dominance checker for

each problem to check if the current search node is dominated by a visited node, and avoids

exploring a dominated node. Gent et al. [50] later utilize computational group theory to

implement generic dominance checker that can be used for any symmetry arising in a CSP.
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Chapter 4

Automatic Generation of Dominance

Breaking Nogoods

In this chapter, we give an automated method to identify and exploit dominance relations

in a class of constraint optimization problems. The idea is to formulate the generation

of dominance breaking nogoods as solving auxiliary generation CSPs, which aim to find

pairs (θ, θ′) of partial assignments of a given COP P such that ¬θ′ is a constraint to remove

suboptimal assignments in P. We start with an example generation CSP for a COP.

Example 10. Consider the COP in (1.1) and a pair of partial assignments θ = {x1 = v1, x2 = v2}

and θ′ = {x1 = v′1, x2 = v′2} where v1, v2, v′1, v′2 ∈ {0, 1} are unknown integers. Let σ be a

mapping for θ and θ′, where a full assignment θ̄′ ∈ DX
θ′ is mapped to θ̄ = σ(θ̄′) ∈ DX

θ such that

θ̄[x3] = θ̄′[x3] and θ̄[x4] = θ̄′[x4]. (4.1)

We construct a CSP as follows:

3v1 + v2 ≥ 3v′1 + v′2

v1 + 2v2 ≤ v′1 + 2v′2

v1 6= v′1 ∨ v2 6= v′2

(4.2)

We claim that if θ and θ′ satisfy (4.2), then all assignments in DX
θ′ can be removed without changing

the optimal value of (1.1).
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We show the claim by constructing a relation ≺ over DX such that σ(θ̄′) ≺ θ̄′ for all θ̄′ ∈ DX
θ′

and proving that ≺ is a dominance relation. Since v1 6= v′1 ∨ v2 6= v′2, we have DX
θ ∩ DX

θ′ = ∅,

which implies that ≺ is transitive and irreflexive by construction. In addition, for all θ̄′ ∈ DX
θ , we

have
3θ̄′[x1] + θ̄′[x2] + 6θ̄′[x3] + 4θ̄′[x4] ≤ 3θ̄[x1] + θ̄[x2] + 6θ̄[x3] + 4θ̄[x4]

⇔ 3θ̄′[x1] + θ̄′[x2] ≤ 3θ̄[x1] + θ̄[x2]

⇔ 3v1 + v2 ≤ 3v′1 + v′2

The second step holds due to (4.1). In other words, if 3v1 + v2 ≤ 3v′1 + v′2, then any assignment

θ̄′ ∈ DX
θ′ will be mapped to θ̄ such that f (θ̄) ≤ f (θ̄′). By similar reasoning, if v1 + 2v2 ≤ v′1 + 2v′2,

then

θ̄′[x1] + 2θ̄′[x2] + 3θ̄′[x3] + 4θ̄′[x4] ≤ θ̄[x1] + 2θ̄[x2] + 3θ̄[x3] + 4θ̄[x4],

which means that θ̄ must have less weight than θ̄′, and θ̄′ is a solution implies that θ̄ is also a solution.

In other words, the full assignment θ̄′ and its image θ̄ must satisfy either one of the three cases in

Definition 1, and ≺ is a dominance relation.

Because ≺ is a dominance relation, a full assignment θ̄′ ∈ DX
θ′ is dominated by some assignments

σ(θ̄′) ∈ DX
θ and can be pruned by Theorem 1. One such solution is θ = {x1 = 0, x2 = 1} and

θ′ = {x1 = 1, x2 = 0}. To prune all full assignments in DX
θ′ , we can simply add a dominance

breaking nogood ¬θ′ ≡ (x1 6= 1∨ x2 6= 0) to the original COP.

Example 10 demonstrate how to construct a generation CSP for a pair of partial assign-

ments. Our method constructs multiple generation CSPs and generates dominance breaking

constraints to remove suboptimal assignments by the following workflow (Figure 4.1):

1. Analyze a target COP P and construct auxiliary generation CSPs.

2. Enumerate all solutions of the generation CSPs using a constraint solver.

3. Generate one nogood constraint for each solution of the CSPs.

4. Add all generated nogood constraints to the COP P.

5. Solve the COP with extra nogoods by a constraint solver.
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CP solver

(2) solve

constraint x[5] != 3 \/ x[11] != 1;
constraint x[10] != 4 \/ x[17] != 3;
constraint x[12] != 2 \/ x[19] != 2;
constraint x[9] != 1 \/ x[19] != 0;

Dominance Breaking Nogoods
(3) generate

(1) build

(4) combine
Constraint 

Optimization 
Problem

Generation 
CSPs

Augmented 
Constraint 

Optimization 
Problem

(5) solve

Figure 4.1: The workflow of automatic dominance breaking for COPs

As shown in Example 10, constraints in generation CSPs are sufficient conditions to ensure

that the derived nogoods ¬θ′ is a valid dominance breaking constraints for P. As long

as generation CSPs are constructed automatically, the workflow can be automated and

coordinated by a simple program. In the following subsections, we formalize the reasoning

process for a class of COPs and provide detailed theoretical explanations on how to obtain

concrete constraints in generation CSPs.

4.1 Dominance Relations over Partial Assignments

Recall that dominance relations over full assignments can be generalized to search nodes

in Definition 2. We can adapt the definition to define dominance relations over partial

assignments in a straightforward manner.

Definition 3. Let θ, θ′ be two partial assignments of a COP P = (X, D, C, f ). If ∀θ̄′ ∈ DX
θ′ ,

∃θ̄ ∈ DX
θ such that θ̄ ≺ θ̄′ for a dominance relation ≺ over DX, then we say θ dominates θ′ (θ ≺ θ′)

with respect to P.

There are several reasons to restrict to sets of full assignments extending from partial
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θ′ θ

θ̄θ̄′ 

(a) Exhaustive enumeration (b) Restriction of same scope

θ̄′ 1 μ(θ̄′ 1)

θ′ θ

θ̄′ 2 μ(θ̄′ 2)
(c) Using the mutation mapping

Figure 4.2: Restriction for checking a subset of pairs of partial assignments

assignments. First, each search node in a search tree is associated with a partial assignment,

and the set of full assignments of a search node in Definition 2 is equivalent to the set

of full assignments extending from the associated partial assignment. Second, a partial

assignment with a fixed scope can be easily represented using an array of integer variables,

each corresponding to the value assigned to a variable in the partial assignment as shown in

Example 10. Third, removing all full assignments in DX
θ′ simply requires adding a nogood

constraint ¬θ′ to the target COP, and it is easy to handle in a constraint programming solver.

What is more, nogood constraints are elementary in constraint programming, and they

can be combined to form arbitrary kinds of constraints. The following theorem is a direct

consequence of Theorem 1.

Theorem 2. Let P = (X, D, C, f ) be a COP. If two partial assignments θ and θ′ satisfy that θ ≺ θ′

with respect to P, then P has the same satisfiability or optimal value as P′ = (X, D, C ∪ {¬θ′}, f ).

Once we establish the dominance relation θ ≺ θ′, the negation of θ′ is the desired

dominance breaking nogood for P. However, checking all possible pairs by Definition 3 and

generating all dominance breaking nogoods will be prohibitively expensive, our approach

is to focus on a subset of nogoods that can be generated efficiently. An arbitrary pair of

partial assignments in P may involve different number of variables or different sets of

variables (Fig 4.2a). Our first restriction is to focus on pairs of partial assignments over
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the same scope, which will reduced the number of checking substantially (Fig 4.2b). Still,

checking θ ≺ θ′ needs to find one full assignment in DX
θ for each full assignments θ̄′ ∈ DX

θ′ ,

and the straightforward implementation requires nested for-loops. Instead of exhaustive

enumeration, we further define the mutation mapping µθ′→θ for θ and θ′ and restrict our

attention to check whether a full assignment θ̄′ is dominated by its image µθ′→θ(θ̄′) (Fig 4.2c).

Definition 4. Let θ, θ′ ∈ DS be two assignments in a COP P over the same scope S. The mutation

mapping µθ′→θ : DX
θ′ 7→ DX

θ maps a full assignment θ̄′ ∈ Dθ′ to another full assignment θ̄ ∈ DX
θ′

such that:

• θ̄[x] = θ[x] and θ̄′[x] = θ′[x] for x ∈ S, and

• θ̄[x] = θ̄′[x] for x /∈ S

In other words, the full assignment µθ′→θ(θ̄′) “mutates” the value assigned by θ′ in θ̄′ to

that assigned by θ. For convenience of presentation, we let θ̄ = µθ′→θ(θ̄′) when it is clear

from the context.

Example 11. Consider the two assignments θ and θ′ in Example 10. We list all full assignments

θ̄′ ∈ DX
θ and their images under µθ′→θ as follows:

θ̄′ θ̄

x1 x2 x3 x4 x1 x2 x3 x4

v1 v2 0 0 7→ v′1 v′2 0 0

v1 v2 0 1 7→ v′1 v′2 0 1

v1 v2 1 0 7→ v′1 v′2 1 0

v1 v2 1 1 7→ v′1 v′2 1 1

where the “mutated” parts are highlighted in color.

With the mutation mapping, the following theorem gives a sufficient condition for θ ≺ θ′

such that each full assignment in DX
θ′ is transformed into a better one in DX

θ .

Theorem 3. Let P = (X, D, C, f ) be a COP where θ and θ′ are two partial assignments in P. If the

mutation mapping µθ′→θ : DX
θ′ 7→ DX

θ satisfies:
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• irreflexivity: the transitive closure of µθ′→θ is irreflexive,

• betterment: ∀θ̄′ ∈ DX
θ′ , f (µθ′→θ(θ̄′)) ≤ f (θ̄′), and

• implied satisfaction: ∀θ̄′ ∈ DX
θ′ , θ̄′ ∈ sol(P) implies that µθ′→θ(θ̄′) ∈ sol(P),

then θ ≺ θ′ with respect to P.

Proof. The proof idea is inspired by Chu and Stuckey [23, 25]. For the ease of presentation,

let σ denote the mutation mapping µθ′→θ for θ and θ′. We construct a relation ≺ by taking

the transitive closure of σ and show that ≺ is a dominance relation in P. Note that ≺ is both

transitive and irreflexive by construction. What remains is to show that for all θ̄′ ∈ DX
θ′ , if

σ(θ̄′) ≺ θ̄′, then σ(θ̄′) and θ̄′ will satisfy either one of the three cases in Definition 1:

• Suppose θ̄′ is a solution of P. If θ̄ ≺ θ̄′, then there must be a sequence θ̄′, σ(θ̄′), . . . , σt(θ̄′)

such that t ∈ N and σt(θ̄) = θ̄ since ≺ is a transitive closure of σ. By the implied

satisfaction, θ̄′ being a solution implies that all elements in the sequence are solutions

of P. Furthermore, the betterment implies that f (θ̄′) ≥ f (σ(θ̄′)) ≥ f (σ2(θ̄′)) ≥ · · · ≥

f (σt(θ)) = f (θ̄). Thus, θ̄ and θ̄′ fulfill the second case in Definition 1.

• Suppose θ̄′ is not a solution of P. If θ̄ ∈ sol(P), then θ̄ and θ̄′ fulfill the first

case in Definition 1. Otherwise, θ̄ /∈ sol(P). Again, we construct a sequence

θ̄′, σ(θ̄′), σ2(θ̄′), . . . , σt(θ̄′) such that t ∈N and σt(θ̄) = θ̄′. Since θ̄ is a non-solution, all

elements in the sequence are non-solutions by contrapositive of the implied satisfaction.

By the betterment again, f (θ̄′) ≥ f (σ(θ̄′)) ≥ f (σ2(θ̄′)) ≥ · · · ≥ f (σt(θ)) = f (θ̄). Thus,

θ̄ and θ̄′ fulfill the third case in Definition 1.

Therefore, ≺ is a dominance relation over DX by Definition 1, and θ dominates θ′ with

respect to P.

The key of Theorem 3 is to define an appropriate mapping σ. The advantage of using

a mutation mapping is that we can derive sufficient conditions to fulfill the irreflexivity,

betterment and implied satisfaction conditions. As we will show in Sections 4.2 and 4.3,
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these sufficient conditions are constraints over θ, θ′ ∈ DS for a class of COPs, and values

assigned to variables in X \ S are irrelevant. Therefore, searching for pairs (θ, θ′) of partial

assignments and nogood generation can be modelled as constraint satisfaction.

In the rest of this section, we give sufficient conditions for the irreflexivity, betterment

and implied satisfaction in Theorem 3 when the mapping is a mutation mapping µθ′→θ for

a pair (θ, θ′) of partial assignments. The sufficient condition for the irreflexivity condition

turns out to be simple.

Theorem 4. Let θ, θ′ ∈ DS be two assignments in a COP P = (X, D, C, f ) over the same scope

S ⊆ X and µθ′→θ : DX
θ′ 7→ DX

θ be the corresponding mutation mapping. If θ 6= θ′, then the mutation

mapping µθ′→θ is irreflexive, and its transitive closure is also irreflexive.

Proof. Since θ 6= θ′, we have DX
θ ∩ DX

θ′ = ∅. For all full assignments θ̄′ ∈ DX
θ′ , the image

θ̄ = µθ′→θ(θ̄′) must not in DX
θ′ . In other words, if (θ̄′, θ̄) ∈ µθ′→θ , then (θ̄, ∗) /∈ µθ′→θ where ∗

is an arbitrary full assignment. Thus, the transitive closure of µθ′→θ is also irreflexive.

The sufficient conditions for betterment and implied satisfaction are based on the

objective and constraints of the target COP. We say that objectives and constraints are

efficiently checkable if the sufficient conditions can be formulated as constraints over θ and θ′

of certain forms, and generation CSPs can be constructed mechanically by analyzing the

problem and adding constraints in a pattern matching approach. In the following, we give

sufficient conditions for different classes of objectives and constraints.

4.2 Betterment for Efficiently Checkable Objectives

Now we give sufficient conditions that imply betterment for µθ′→θ , namely ∀θ̄′ ∈ DX
θ′ ,

f (θ̄ = µθ′→θ(θ̄′)) ≤ f (θ̄′). The key idea is to define a projection function f↓S of the objective

function f onto S so that the relative magnitude of f (θ̄) and f (θ̄′) can be determined by

f ↓S (θ) and f ↓S (θ′). In the following, we consider two types of efficiently checkable

objective functions: separable functions and supermodular/submodular functions.
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4.2.1 Separable Objective Functions

A function f is separable if it can be written as a sum of functions of individual variables,

i.e., f (θ̄) = f1(θ̄[x1]) + · · ·+ fn(θ̄[xn]), where each component is fi : Z 7→ R. We define the

projection function f↓S (θ) = ∑xi∈S fi(θ[xi]) for a partial assignment θ ∈ DS.

Theorem 5. Let θ, θ′ ∈ DS be two assignments in a COP P = (X, D, C, f ) over the same scope

S ⊆ X and µθ′→θ : DX
θ′ 7→ DX

θ be the corresponding mutation mapping. Suppose f is a separable

function. If we have

f↓S(θ) ≤ f↓S(θ
′), (4.3)

then f (µθ′→θ(θ̄′)) ≤ f (θ̄′) for all full assignments θ̄′ ∈ DX
θ′ .

Proof. For each full assignment θ̄′ ∈ DX
θ′ and θ̄ = µθ′→θ(θ̄′) ∈ DX

θ , we have

f (θ̄′) = f↓S(θ
′) + ∑

xi∈X\S
fi(θ̄
′[xi]) and f (θ̄) = f↓S(θ) + ∑

xi∈X\S
fi(θ̄[xi]).

By Definition 4, for all xi ∈ X \ S, θ̄[xi] = θ̄′[xi] and therefore fi(θ̄
′[xi]) = fi(θ̄[xi]). Thus,

f↓S(θ) ≤ f↓S(θ
′) implies that f (θ̄) ≤ f (θ̄′).

Therefore, when the objective of a COP is a separable function, (4.3) is a sufficient

condition for betterment and should be added to generation CSPs.

Example 12. A typical example of separable functions is the linear function f (θ̄) = ∑xi∈S wi θ̄[xi],

where wi ∈ R is the weight for variable xi. Another example arises from the classical assignment

problem. Given a set A of agents and a set T of tasks, the problem asks for a mapping m : T 7→ A such

that the cost function ∑i∈T cost(i, m(i)) is minimized, where cost(i, m(i)) is the cost of assigning

task i to agent m(i). We can define one variable xi with domain D(xi) = A for each task i ∈ T.

The cost function can be viewed as a separable function f (θ̄) = f1(θ̄[x1]) + · · ·+ fn(θ̄[xn]) where

fi(θ̄[xi]) = cost(i, θ̄[xi]).
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4.2.2 Supermodular and Submodular Objective Functions

A supermodular function is a set function g : 2U 7→ R that assigns a value g(V) ∈ R to each

subset V of the universe U such that

g(V ∪ T)− g(V) ≤ g(V ′ ∪ T)− g(V ′)

for every V, V ′ ⊆ U where V ⊆ V ′ and T ⊆ U \V ′. In a binary COP P = (X, D, C, f ) where

D(x) = {0, 1} for all variable x ∈ X, an assignment θ ∈ DS can be associated with a set

V(θ) = {i | θ[xi] = 1}. We say that the objective function f of a binary COP P is equivalent

to a supermodular function g if f (θ̄) = g(V(θ̄)) for every θ̄ ∈ DX, and similarly we define

f↓S(θ) = g(V(θ)).

Theorem 6. Let θ, θ′ ∈ DS be two assignments in a COP P = (X, D, C, f ) over the same scope

S ⊆ X and µθ′→θ : DX
θ′ 7→ DX

θ be the corresponding mutation mapping. Suppose f is a function

which is equivalent to a supermodular function g : 2V 7→ R in a binary COP. If we have

f↓S(θ) ≤ f↓S(θ
′) ∧V(θ) ⊆ V(θ′), (4.4)

then f (µθ′→θ(θ̄′)) ≤ f (θ̄′) for all full assignments θ̄′ ∈ DX
θ′ .

Proof. By definition of a supermodular function, we have

g(V(θ) ∪ T)− g(V(θ)) ≤ g(V(θ′) ∪ T)− g(V(θ′)) (4.5)

for V(θ) ⊆ V(θ′) ⊆ V and any set T ⊆ U \V(θ′). Let T = {i | θ̄′[xi] = 1∧ xi ∈ X \ S} for a

full assignment θ̄′ ∈ DX
θ′ . Since f is equivalent to g, we have f (θ̄′) = g(V(θ̄′)) = g(V(θ′)∪ T).

By Definition 4, θ̄[xi] = θ̄′[xi] for all variables xi ∈ X \ S, where θ̄ = µθ′→θ(θ̄′). We also have

f (θ̄) = g(V(θ̄)) = g(V(θ) ∪ T). Therefore, equation (4.5) becomes

f (θ̄) ≤ f (θ̄′)− g(V(θ′)) + g(V(θ))

⇔ f (θ̄) ≤ f (θ̄′)− f↓S (θ′) + f↓S (θ)

Since f↓S (θ) ≤ f↓S (θ′), the above inequality implies that f (θ̄) ≤ f (θ̄′).
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A function g is submodular if −g is supermodular. Thus minimizing a supermodular

function is equivalent to maximizing a submodular function.

Theorem 7. Let θ, θ′ ∈ DS be two assignments in a COP P = (X, D, C, f ) over the same scope

S ⊆ X and µθ′→θ : DX
θ′ 7→ DX

θ be the corresponding mutation mapping. Suppose f is a function

which is equivalent to a submodular function g : 2V 7→ R in a binary COP. If we have

f↓S(θ) ≥ f↓S(θ
′) ∧V(θ) ⊆ V(θ′), (4.6)

then f (θ̄) ≥ f (θ̄′) for all full assignments θ̄′ ∈ DX
θ′ .

The proof of Theorem 7 is similar to that of Theorem 6. When the objective in a binary

COP is to minimize a supermodular function or to maximize a submodular function,

and (4.4) and (4.6) are sufficient conditions for betterment respectively, and should be

added to generation CSPs. We note that Theorems 3 and 5 can also be easily adapted for

maximization.
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Figure 4.3: An example weighted undirected graph

Example 13. A linear function is an example submodular function. Another typical example is

the cut function in a maximum cut problem on a graph G = (V, E). The problem is to find a

partition of V to minimize ∑(i,j)∈E(xi ⊗ xj) where xi = 1 means that a node i ∈ V is in the first

partition, and (xi ⊗ xj) is 1 when xi 6= xj. Consider the weighted undirected graph in Figure 4.3.

Suppose θ = {x4 = 0, x6 = 1} and θ′ = {x4 = 1, x6 = 1} are assignments over the scope

S = {x4, x6}. The associated sets are V(θ) = {6} and V(θ′) = {4, 6}, and the values of projection

function is f↓S(θ) = g(V(θ)) = 4 + 4 + 5 = 13 and f↓S(θ
′) = g(V(θ′)) = 1 + 2 + 4 + 5 = 12.

The conditions in Theorem 7 are satisfied, and we can verify that f (µθ′→θ(θ̄′)) ≥ f (θ̄′) for all
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θ̄′ ∈ DX
θ′ . For example, if θ̄′ = {x1 = 0, x2 = 1, x3 = 1, x4 = 1, x5 = 0, x6 = 1}, then

µθ′→θ(θ̄′) = {x1 = 0, x2 = 1, x3 = 1, x4 = 0, x5 = 0, x6 = 1}, and f (θ̄) = 4 + 5 + 2 + 1 + 4 =

16 ≥ f (θ̄′) = 1 + 2 + 1 + 4 = 8.

4.3 Implied Satisfaction for Efficiently Checkable Constraints

Now we consider sufficient conditions for the implied satisfaction in Theorem 3. Note that

a full assignment θ̄ is a solution of P if and only if θ̄ satisfies all constraints c ∈ C. If for all

θ̄′ ∈ DX
θ′ and all c ∈ C, θ̄′ satisfies c implies that θ̄ satisfies c, then the implied satisfaction

also hold. This suggests considering each constraint c ∈ C separately.

We say a partial assignment θ is applied to c ∈ C by replacing every occurrence of

x ∈ var(c) ∩ S by value θ[x]. The resulting constraint cθ has scope var(c)\S. The follow-

ing proposition states that cθ implies that cθ′ is a sufficient condition to prove implied

satisfaction.

Proposition 2. Let θ, θ′ ∈ DS be two assignments in a COP P = (X, D, C, f ) over the same scope

S ⊆ X and µθ′→θ : DX
θ′ 7→ DX

θ be the corresponding mutation mapping. If cθ′ ⇒ cθ holds for a

constraint c ∈ C, then θ̄′ satisfies c⇒ θ̄ satisfies c for all θ̄′ ∈ DX
θ′ , where θ̄ = µθ′→θ(θ̄′).

Proof. Let S′ = var(c) \ S. By Definition 4, θ̄′[x] = θ̄[x] for x /∈ S, and so θ̄′↓S′= θ̄↓S′ . Since

cθ′ ⇒ cθ, we have cθ′ ⊆ cθ, which means that θ̄′↓S′∈ cθ′ implies that θ̄↓S′∈ cθ. Thus, we

have θ̄′ satisfies c implies that µθ′→θ(θ̄′) satisfies c.

In the following sections, we consider sufficient conditions for cθ′ ⇒ cθ. The sufficient

conditions for all constraints should be added to generation CSPs, whose conjunction

implies the implied satisfaction in Theorem 3.

4.3.1 Unary Constraints

A unary constraint restricts the values that are valid for a single variable x ∈ X, which are

usually presolved and cast into the domain constraint of the form x ∈ D(x). The sufficient

condition for cθ′ ⇒ cθ is straightforward.
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Theorem 8. Let θ, θ′ ∈ DS be two assignments in a COP P = (X, D, C, f ) over the same scope

S ⊆ X. Suppose c ∈ C is a domain constraint of the form (x ∈ D(x)). If θ[x] ∈ D(x), then

cθ′ ⇒ cθ.

Proof. Since θ[x] ∈ D(x), cθ is always true, and cθ′ ⇒ cθ always hold.

Note that if θ′[x] /∈ D(x), then all full assignments θ̄′ in DX
θ′ are trivially non-solutions

of P. An extra nogood constraint ¬θ′ is redundant in a propagation solver. Therefore, we

would add

θ[x] ∈ D(x) ∧ θ′[x] ∈ D(x) (4.7)

for all variables x ∈ S into generation CSPs.

4.3.2 Linear Inequality Constraints

A linear inequality constraint is of the form ∑ wixi ≤ b where wi, b ∈ R. The sufficient

condition for cθ′ ⇒ cθ is stated as follows.

Theorem 9. Let θ, θ′ ∈ DS be two assignments in a COP P = (X, D, C, f ) over the same scope

S ⊆ X. Suppose c ∈ C is a linear inequality constraint of the form ∑ wixi ≤ b, and S′ = S∩ var(c).

If we have

∑
xi∈S′

wiθ[xi] ≤ ∑
xi∈S′

wiθ
′[xi], (4.8)

then cθ′ ⇒ cθ.

Proof. By definition, since ∑xi∈S′ wiθ[xi] ≤ ∑xi∈S′ wiθ
′[xi], we have

cθ′ ≡ ( ∑
xi∈(var(c)\S)

wixi ≤ b− ∑
xi∈S′

wiθ
′[xi])

⇒ ( ∑
xi∈(var(c)\S)

wixi ≤ b− ∑
xi∈S′

wiθ[xi]) ≡ cθ

Note that if ∑xi∈S′ wiθ
′[xi] > b, then any full assignment θ̄′ ∈ DX

θ′ must not satisfy the

linear inequality constraint c ≡ (∑ wixi ≤ b) and is trivially a nonsolution of P. Therefore,

we also add a constraint ∑xi∈S′ wiθ
′[xi] ≤ b in addition to (4.8) into generation CSPs.
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4.3.3 Boolean Disjunction Constraints

The Boolean disjunction constraint ∨xi∈Bxi requires at least one Boolean variable in the set B

takes the true value. The following result gives a sufficient condition for cθ′ ⇒ cθ when c is

a Boolean disjunction constraint.

Theorem 10. Let θ, θ′ ∈ DS be two assignments in a COP P = (X, D, C, f ) over the same scope

S ⊆ X. Suppose c ∈ C is a Boolean disjunction constraint (∨xi∈Bxi) and S′ = S ∩ B. If we have

∨xi∈S′θ
′[xi]⇒ ∨xi∈S′θ[xi], (4.9)

then cθ′ ⇒ cθ.

Proof. Since e′ = ∨xi∈S′θ
′[xi]⇒ ∨xi∈S′θ[xi] = e, either e′ and e are both true, or e′ is evaluated

to false. In the former case, cθ′ and cθ are always true, and it implies that cθ′ ⇒ cθ always

holds. As for the latter case, cθ′ ≡ (∨xi∈S\S′xi), and cθ ≡ e∨ (∨xi∈S\S′xi). Therefore, cθ′ ⇒ cθ

regardless of the value of e.

Boolean disjunction constraints can also be extended where Boolean variables are

results of binary comparisons (x ◦ b) where x ∈ X is a variable, b ∈ Z is an integer and

◦ ∈ {=, 6=,≥,≤,<,>} is a binary comparison operator.

Theorem 11. Let θ, θ′ ∈ DS be two assignments in a COP P = (X, D, C, f ) over the same

scope S ⊆ X. Suppose c is a Boolean disjunction constraint ∨xi∈var(c)(xi ◦i bi) where bi ∈ Z and

◦i ∈ {=, 6=,≥,≤,<,>} is a binary comparison operator. If we have

∨xi∈S′(θ
′[xi] ◦i bi)⇒ ∨xi∈S′(θ[xi] ◦i bi), (4.10)

then cθ′ ⇒ cθ, where S′ = S ∩ var(c).

The proof of Theorem 11 is similar to that of Theorem 10.

4.3.4 Counting Constraints

Counting constraints restrict the number of occurrences of some values in the set V within a

given scope T of variables. The Global Constraint Catalog [8] has the keyword “Counting
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Constraints” under which there are 39 different global constraints, among which alldifferent,

among, and global cardinality constraints are famous examples.

In this section, we first consider two basic constraints atleast(T, V, k) and atmost(T, V, k)

where T ⊆ X is a set of variables, V is a set of values, and k ∈ N is an integer, and then

consider example counting constraints that are composed of several such basic constraints.

The atleast and atmost constraints require that the number of variables in T that take values

in V is at least and at most k respectively. The following theorems give the sufficient

conditions for cθ′ ⇒ cθ.

Theorem 12. Let θ, θ′ ∈ DS be two assignments in a COP P = (X, D, C, f ) over the same scope

S ⊆ X. Suppose c ∈ C is a constraint of the form atleast(T, V, k). If we have

|{x | θ[x] ∈ V ∧ x ∈ S′}| ≤ |{x | θ′[x] ∈ V ∧ x ∈ S′}|, (4.11)

then cθ′ ⇒ cθ, where S′ = T ∩ S.

Proof. The atleast(T, V, k) constraint can be expressed as

atleast(T, V, k) ≡ (k ≤ |{x | θ[x] ∈ V ∧ x ∈ T}|)

Let d = |{x | θ[x] ∈ V ∧ x ∈ S′}| and d′ = |{x | θ′[x] ∈ V ∧ x ∈ S′}|. Since T =

(T ∩ S) ∪ (T \ S) and d ≥ d′, we have

cθ′ ≡ (k ≤ d′ + |{x|(x = v) ∧ v ∈ V ∧ x ∈ T \ S}|)

⇒ (k ≤ d + |{x|(x = v) ∧ v ∈ V ∧ x ∈ T \ S}|)

≡ cθ

We have a similar result for the constraint atmost(T, V, k).

Theorem 13. Let θ, θ′ ∈ DS be two assignments in a COP P = (X, D, C, f ) over the same scope

S ⊆ X. Suppose c ∈ C is a constraint of the form atmost(T, V, k) and S′ = T ∩ S. If we have

|{x | θ[x] ∈ V ∧ x ∈ S′}| ≥ |{x | θ′[x] ∈ V ∧ x ∈ S′}|, (4.12)
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then cθ′ ⇒ cθ, where S′ = T ∩ S..

The proof is also similar to that of Theorem 12. Similar to linear inequality constraints,

we can avoid generate redundant nogood constraint ¬θ′ for a partial assignment θ′ violating

atmost(T, V, k). Therefore, we can add a constraint |{x | θ′[x] ∈ V ∧ x ∈ S′}| ≤ k in addition

to (13) into generation CSPs.

By Theorems 12 and 13, we can derive the sufficient conditions for cθ′ ⇒ cθ where c is

a counting constraint. The first famous example of counting constraints is the alldifferent

constraint [115], where alldifferent(T) enforces that all variables in a set T take distinct values.

We can treat it as the conjunction ∧v∈Vatmost(T, {v}, 1) where V = ∪x∈TD(x) is the union

of domains of variables in T. Further, if v ∈ V only appears in the domain of one variable,

atmost(T, {v}, 1) is trivially true. Therefore, the sufficient condition for cθ′ ⇒ cθ is stated

as follows.

Corollary 1. Let θ, θ′ ∈ DS be two assignments in a COP P = (X, D, C, f ) over the same scope

S ⊆ X. Suppose c ∈ C is a constraint of the form alldifferent(T) where T ⊆ X. If we have

{θ[x] | x ∈ T ∩ S ∧ θ[x] ∈ V ′} ⊆ {θ′[x] | x ∈ T ∩ S ∧ θ′[x] ∈ V ′}, (4.13)

where V ′ = ∪x1,x2∈T,x1 6=x2(D(x1) ∩ D(x2)), then cθ′ ⇒ cθ.

The proof follows directly from the Theorem 13 and the fact that alldifferent(T) ≡

∧v∈V′atmost(T, {v}, 1).

The alldifferent_except_0 constraint [8] is a generalization of the alldifferent constraint

where all variables in a set T are required to take distinct values except for those variables

that are assigned value 0. The sufficient condition is also related to the set of assigned values

of θ and θ′ to variables in T.

Corollary 2. Let θ, θ′ ∈ DS be two assignments in a COP P = (X, D, C, f ) over the same scope

S ⊆ X. Suppose c ∈ C is the constraint alldifferent_except_0(T) where T ⊆ X. If we have

{θ[x] | x ∈ T ∩ S ∧ θ[x] ∈ V ′} ⊆ {θ′[x] | x ∈ T ∩ S ∧ θ′[x] ∈ V ′}, (4.14)
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where V ′ = ∪x1,x2∈T,x1 6=x2((D(x1) ∩ D(x2)) \ {0}), then cθ′ ⇒ cθ.

The proof idea is similar to that of Corollary 1.

Another example is the among constraint [9, 11], where among(T, V, k) takes a set T of

variables, a set V of values and an integer k ∈N as arguments. The constraint requires that

k = |{x | x ∈ T ∧ x = v ∧ v ∈ V}|, and can be expressed as the conjunction atleast(T, V, k) ∧

atmost(T, V, k). Thus, we have the following result for among(T, V, k).

Corollary 3. Let θ, θ′ ∈ DS be two assignments in a COP P = (X, D, C, f ) over the same scope

S ⊆ X. Suppose c ∈ C is the constraint among(T, V, k) where T ⊆ X is a set of variables, V is a

set of values and k ∈N is an integer. If we have

|{x | x ∈ T ∧ θ[x] ∈ V}| = |{x | x ∈ T ∧ θ′[x] ∈ V}|, (4.15)

then cθ′ ⇒ cθ.

The global cardinality constraint [104] is a generalization of both alldifferent and among

constraint. A global cardinality constraint GCC(T, U) takes two arguments where T is a

set of variables, and U is a set of triples (vj, lj, uj). For each triple in U, value vj should be

taken by at least lj and at most uj variables in T. The alldifferent constraint is simply a global

cardinality constraint where each value can be taken at most once. Note that GCC(T, U) is

also a conjunction of atleast and atmost constraints:

GCC(T, U) ≡
∧

(vj,lj,uj)∈U

(atleast(T, {vj}, lj) ∧ atmost(T, {vj}, uj))

Therefore, we have the following result for GCC(T, U).

Corollary 4. Let θ, θ′ ∈ DS be two assignments in a COP P = (X, D, C, f ) over the same scope

S ⊆ X. Suppose c is the constraint GCC(T, U) where T ⊆ X is a set of variables, and U is a set of

tuples (vj, lj, uj) such that vj, lj, uj ∈ Z. If we have

|{x | x ∈ S ∩ T ∧ θ[x] = vj}| = |{x | x ∈ S ∩ T ∧ θ′[x] = vj}| (4.16)

for all tuple (vj, lj, uj) ∈ U, then cθ′ ⇒ cθ.
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4.3.5 Circuit Constraint

The circuit constraint [35, 67] is useful in various graph problems such as the famous

Travelling Salesman Problem (TSP). It constrains an array of variables representing successors

of each node on a graph, which requires that the resulting edges to form a Hamiltonian

cycle. Formally, suppose G = (V, E) is a graph where |V| = n, and we have one variable xi

for each node i ∈ V representing the successor node after visiting node i. The constraint

circuit(x1, . . . , xn) requires that there is a cyclic permutation y1, . . . , yn of 1 . . . n such that

yi+1 = xyi , i = 1, . . . , n− 1

y1 = xyn

The sufficient conditions for cθ′ ⇒ cθ require the introduction of additional variables for the

path represented by θ and θ′.

Theorem 14. Let c be a constraint circuit(x1, . . . , xn) and S′ = S ∩ {x1, . . . , xn}. If y1, . . . , y|S′|+1

and y′1, . . . , y′|S′|+1 are two sets of introduced variables such that:

(a) alldifferent(y1, . . . , y|S′|+1) and alldifferent(y′1, . . . , y′|S′|+1),

(b) ∀xi ∈ S′, ∃j ∈ 1, ..., |S′|, yj = i ∧ yj+1 = θ[xi],

(c) ∀xi ∈ S′, ∃j ∈ 1, ..., |S′|, y′j = i ∧ y′j+1 = θ′[xi],

(d) y1 = y′1 and y|S|+1 = y′|S|+1,

then cθ′ implies cθ.

Proof. Conditions (a) to (d) implies that θ and θ′ forms two paths traversing the same set of

nodes where they start from the same node y1 = y′1 and end at the same node y|S|+1 = y′|S|+1.

For any partial assignments over X \ S that satisfies cθ′, it must form a tour starting from

y|S|+1 and ending at y1, which must also be a solution for cθ. Hence, cθ′ ⇔ cθ.

43



4.4 Compatibility between Dominance Breaking Nogoods

Theorems 2 and 3 only consider the soundness of adding one nogood constraint into P.

Recall that our method enumerates all pairs (θ, θ′) of partial assignments that are solutions

of generation CSPs, and all derived dominance breaking nogoods ¬θ′ are added to the COP

P for search space pruning. It is necessary to ensure that all nogoods are also compatible in

the sense that not all optimal solutions of P are eliminated.

Example 14. Consider a variant of the COP in (1.1) where the first two items has two units of

weight and profit. Following the same procedure as Example 10, we can construct a generation CSP

for a pair of partial assignments θ = {x1 = v1, x2 = v2} and θ′ = {x1 = v′1, x2 = v′2} as follows:

2v1 + 2v2 ≥ 2v′1 + 2v′2

2v1 + 2v2 ≤ 2v′1 + 2v′2

v1 6= v′1 ∨ v2 6= v′2

(4.17)

where v1, v2, v′1, v′2 ∈ {0, 1} are unknown integers. Solving (4.17) can result in two possible solutions:

either (1) θ1 = {x1 = 1, x2 = 0} and θ′1 = {x1 = 0, x2 = 1}, or (2) θ2 = {x1 = 0, x2 = 1} and

θ′2 = {x1 = 1, x2 = 0}. Adding both ¬θ′1 and θ′2 into the COP will eliminate all optimal solutions

and change the optimal objective value.

In this section, we propose to add extra constraints in generation CSPs to avoid generating

incompatible nogoods. We first show that the lexicographical ordering between θ and θ′

is a sufficient condition to ensure the compatibility of generated nogoods. Sometimes,

the lexicographical ordering constraint is too restrictive, and we further generalize the

lexicographical ordering to obtain more relaxed sufficient conditions for compatibility,

which will result in generating more dominance breaking nogoods.

4.4.1 Lexicographical Ordering for Partial Assignments

Given two tuples (a1, . . . , an), (b1, . . . , bn) ∈ Rn, we say that (a1, . . . , an) is lexicograph-

ically smaller than (b1, . . . , bn), denoted by (a1, . . . , an) <lex (b1, . . . , bn), if and only if
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∃j ∈ {1, . . . , n} such that aj < bj and ∀j′ < j, aj′ = bj′ . Note that an assignment θ =

{xij = vij | xij ∈ S} over the scope S can be treated as a tuple (vi1 , vi2 , . . . , vik) of values,

where |S| = k and i1 < i2 < · · · < ik. We are interested in preserving the lexicographically

smallest optimal solution which is an optimal solution of P and is lexicographically smallest

among all solutions with the optimal objective value.

Theorem 15. Let θ, θ′ ∈ DS be two assignments in a COP P = (X, D, C, f ) over the same scope

S ⊆ X. If θ <lex θ′, and (θ, θ′) satisfies the betterment and implied satisfaction conditions, then the

lexicographically smallest optimal solution always satisfies ¬θ′.

Proof. Suppose θ̄′ ∈ DX
θ′ is an optimal solution of P and θ̄ = µθ′→θ(θ̄′) ∈ DX

θ . By Definition 4,

θ̄[x] = θ̄′[x] for all variables x /∈ S, and θ <lex θ′ implies that θ̄[x] <lex θ̄′[x]. Since θ and θ′

satisfy betterment and implied satisfaction, θ̄′ is an optimal solution implies that θ̄ is also an

optimal solution. In other words, if θ̄′ ∈ DX
θ′ , then there must be another optimal solution

θ̄ ∈ DX
θ which is lexicographically smaller than θ̄′. By contraposition, the lexicographically

smallest optimal solution does not belong to DX
θ′ and always satisfy the nogood constraint

¬θ′.

Theorem 15 implies that if we enforce θ <lex θ′ in generation CSPs, generated nogoods

will not remove the lexicographically smallest optimal solution. This ensures that all

generated nogoods ¬θ′ derived from the solutions of generation CSPs are compatible, and

adding all nogoods to the COP preserves the optimal value of P. We note the idea of using

the lexicographical ordering as the tiebreaker also appears in previous works [23, 31].

4.4.2 Generalized Lexicographical Ordering

The lexicographical ordering constraint between θ and θ′ is a sufficient condition for that at

least one optimal solution is preserved, but sometimes the condition is too strong such that

it eliminates useful solutions of the generation CSP.

Example 15. Consider the COP in (1.1) again. If we want to find a pair of partial assignments over

a scope S = {x1, x2}, then we can construct a generation CSP by Theorems 4, 5, 9 and 15 as follows:
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irreflexivity: θ[x1] 6= θ′[x1] ∨ θ[x2] 6= θ′[x2]

betterment: − (3θ[x1] + θ[x2]) ≤ −(3θ′[x1] + θ′[x2])

implied satisfaction: θ[x1] + 2θ[x2] ≤ θ′[x1] + 2θ′[x2]

compatibility: (θ[x1], θ[x2]) <lex (θ′[x1], θ′[x2])

(4.18)

The pair θ1 = {x2 = 0, x3 = 1} and θ′1 = {x2 = 1, x3 = 0} satisfy the conditions, and ¬θ′1 is a

valid nogood for the COP P.

Similarly, we can construct a generation CSP for a scope S = {x3, x4}:

irreflexivity: θ[x3] 6= θ′[x3] ∨ θ[x4] 6= θ′[x4]

betterment: − (6θ[x3] + 4θ[x4]) ≤ −(6θ′[x3] + 4θ′[x4])

implied satisfaction: 3θ[x3] + 4θ[xj] ≤ 3θ′[x3] + 4θ′[x4]

compatibility: (θ[x3], θ[x4]) <lex (θ′[x3], θ′[x4])

(4.19)

The CSP (4.19) is unsatisfiable, but we can observe that the pair θ2 = {x3 = 1, x4 = 0} and

θ′2 = {x3 = 0, x4 = 1} also satisfy conditions in Theorem 3, and the nogood constraint ¬θ′2 is

compatible with ¬θ′1. We can add both constraints to P while preserving the optimal solution

θ̄opt = {x1 = 0, x2 = 1, x3 = 1, x4 = 0} with the objective value 9.

In order to find more dominance breaking nogoods by solving the generation CSPs,

we give a more relaxed sufficient condition for the compatibility of generated nogoods

based on the generalized lexicographical order. Instead of enforcing θ <lex θ′, the generalized

lexicographical ordering utilizes sensitive functions over DX. A function h defined over DX

is sensitive if for any S ⊆ X, there is a projection function h↓S defined over DS such that

h↓S(θ) < h↓S(θ
′) implies that ∀θ̄′ ∈ DX

θ′ , h(µθ′→θ(θ̄′)) < h(θ̄′).

Theorem 16. Let θ, θ′ ∈ DS be two assignments in a COP P = (X, D, C, f ) over the same scope

S ⊆ X. If we have

(h1↓S(θ), . . . , hm↓S(θ)) <lex (h1↓S(θ
′), . . . , hm↓S(θ

′)),

where h1, . . . , hm are sensitive functions, and the pair (θ, θ′) satisfies betterment and implied satisfac-
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tion, then there is at least one optimal solution satisfying ¬θ′.

Proof. Without loss of generality, assume that m = 1. Let θ̄′ ∈ DX
θ′ be an optimal solution of

P and θ̄ = µθ′→θ(θ̄′) ∈ DX
θ . Since the pair (θ, θ′) satisfies betterment and implied satisfaction,

θ̄ must also be an optimal solution. Also, h1 is a sensitive function, and h1↓S(θ) < h1↓S(θ
′)

implies that h1(θ̄) < h1(θ̄
′). In other words, if there is an optimal solution θ̄′ ∈ DX

θ′ , there

must be another optimal solution θ̄ ∈ DX
θ such that either h1(θ̄) < h1(θ̄

′) or θ̄ <lex θ̄′. By

contraposition, the lexicographically smallest optimal solution with the smallest value of

h1 among the optimal solutions does not belong to DX
θ′ and always satisfies the nogood

constraint ¬θ′. The proof generalizes trivially to the case when m > 1.

Note that we can use arbitrary sensitive functions in Theorem 16 as long as their

projection functions are well-defined. The generalized lexicographical ordering degenerates

to the lexicographical ordering if we use element functions e1, . . . , en where ei(θ̄) = θ̄[xi], and

the projection function over a scope S is defined as

ei↓S(θ) =


θ[xi] if xi ∈ S

0 otherwise

By Theorem 16, the sufficient condition for compatibility is that

(e1↓S(θ), . . . , en↓S(θ)) <lex (e1↓S(θ
′), . . . , en↓S(θ

′)),

which can be simplified into θ <lex θ′ since ei↓S(θ) = ei↓S(θ
′) = 0 when xi /∈ S.

As shown in Example 15, however, the lexicographical ordering is a too strong sufficient

condition for compatibility. In practice, we also use sensitive functions arising from the

objective of a COP P. It is easy to verify that separable objectives and supermodular

objectives are sensitive with appropriate definitions of their projection functions.

Proposition 3. Let θ, θ′ ∈ DS be two assignments in a COP P = (X, D, C, f ) over the same scope

S ⊆ X. Suppose f is a separable function such that f (θ̄) = ∑ fi(θ̄[xi]) for all θ̄ ∈ DX. The separable

function f is sensitive if we define the projection function of f be f↓S(θ) = ∑xi∈S fi(θ[xi]).
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Proposition 4. Let θ, θ′ ∈ DS be two assignments in a COP P = (X, D, C, f ) over the same

scope S ⊆ X. Suppose f is a function that is equivalent to a supermodular function g. The

supermodular function f is sensitive if we define the projection function of f be f↓S(θ) = g(V(θ))

where V(θ) = {i | θ[xi] = 1}.

Example 16. Consider the generation CSP in (4.19) again. If we replace the sufficient condition for

compatibility by:

(−(6θ[x3] + 4θ[x4]), θ[x3], θ[x4]) <lex (−(6θ′[x3] + 4θ′[x4]), θ′[x3], θ′[x4]),

then solving the generation CSP will result in the desired pair of partial assignments and a nogood

constraint ¬θ′ ≡ (x3 6= 0∨ x4 6= 1).

We can also define sensitive functions arising from linear inequality constraints and

counting constraints. In the following propositions, we assume that θ, θ′ ∈ DS are two

assignments in a COP P = (X, D, C, f ) over the same scope S ⊆ X.

Proposition 5. Suppose c is a linear inequality constraint (∑ wixi ≤ b). If we define h(θ̄) =

∑ wi θ̄[xi] for all full assignment θ̄ ∈ DX, and the projection function h↓S(θ) = ∑xi∈S wiθ[xi], then

h is sensitive.

Proposition 6. Suppose c is a constraint atmost(T, V, k). If we define h(θ̄) = |{x | θ̄[x] ∈

V ∧ x ∈ T}| for a full assignment θ̄ ∈ DX, and the projection function h↓S(θ) = |{x | θ[x] ∈

V ∧ x ∈ T ∩ S}|, then h is sensitive.

Proposition 7. Suppose c is a constraint atleast(T, V, k). If we define h(θ̄) = −|{x | θ̄[x] ∈

V ∧ x ∈ T}| for a full assignment θ̄ ∈ DX, and the projection function h↓T(θ) = −|{x | θ[x] ∈

V ∧ x ∈ T ∩ S}|, then h is sensitive.

Recall that our goal is to find more relaxed sufficient conditions for compatibility. In the

actual implementation, we usually construct the tuples in Theorem 16 using the objective

function, followed by sensitive functions arising from the linear inequality and counting

constraints, and finally the element functions for tie-breaking.
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4.5 Modeling Nogood Generation as Constraint Satisfaction

Sections 4.1 to 4.4 state the sufficient conditions in which θ ≺ θ′ with respect to P, and

¬θ′ can be added to P for dominance breaking. Our proposal is applicable for a COP P

as long as the objective and all constraints in P are all efficiently checkable. Generating

nogoods with all possible lengths can be computationally intractable, and we propose

several implementation techniques to further improve the solving efficiency.

First, we limit the scope size of partial assignments for generating nogood constraints.

The following theorem states the complexity result when using the simple generate-and-test

method to find all dominance breaking nogoods of certain length.

Theorem 17. Let P = (X, D, C, f ) be a COP, and l ∈ N be a positive integer. Suppose

max(|D(xi)|) = d for all variables xi ∈ X, there are O((|X|l ) · (
dl

2 )) pairs of partial assignments θ

and θ′ where θ 6= θ′ and |S| = l.

Proof. The candidate pairs can be enumerated by first selecting l variables xi1 , . . . , xil from X,

and then select two distinct tuples from D(xi1)×· · ·×D(xil ), which has (∏k=1,...,l |D(xik
)|

2 ) ≤ (dl

2 )

ways in total. Hence, there are totally O((|X|l ) · (
dl

2 )) such candidate pairs.

The total number of pairs grows polynomially with respect to the variable number |X|

and the maximum domain size max(|D(xi)|), but grows exponentially with respect to the

maximum length of dominance breaking nogoods. To ensure the efficiency of our method,

we usually limit the maximum scope size |S| to a fixed integer L and attempt to generate

and augment the COP P with nogoods of length l ≤ L.

Second, we further observe that some generated nogoods are redundant. Recall that we

construct multiple generation CSPs from the analysis of a target COP, and different CSPs

generate dominance breaking nogoods of different lengths. By Proposition 1, an implied

nogood constraint is both logically redundant and propogation redundant in the COP, and

it contributes no extra pruning in a constraint solver. For each solution (θ̃, θ̃′), we add a

nogood constraint

∨xi∈var(θ̃′)(xi /∈ var(θ′) ∨ θ′[xi] 6= θ̃′[xi]) (4.20)
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into all generation CSPs with length l > |var(θ̃′)|, so that (θ, θ′) in a scope of size l will

correspond to a nogood ¬θ′ that is not redundant with respect to ¬θ̃′.

Third, we combine multiple generation CSPs for scopes of the same size into a single

generation model. As shown in Example 15, sufficient conditions for betterment (Theorems 5

to 6), implied satisfaction (Theorems 8 to 14) and compatibility (Theorems 15 and 16) are

nothing but constraints on a pair of partial assignments when the scope is fixed. Each

generation CSP corresponds to a scope, and therefore enumerating all dominance breaking

nogoods requires solving O((|X|l )) CSPs in total. We observe that generation CSPs have

the same type of constraints except that parameters are different for different scopes,

and generation CSPs over scopes of the same size can be combined by utilizing element

constraints [126] in constraint programming. In Figure 4.4, we give example models for the

0-1 knapsack problem and the generation CSP in the MiniZinc language [100]. The problem

is to maximize the value of items chosen from a set of n items subject to the constraint that

the total weights of chosen items cannot exceed the capacity limit W. Figure 4.4a is the

problem model. Lines 1 to 4 include the parameters of the problems, while line 5 declares

an array of binary variables, each for one item. Lines 7 and 9 are the objective and the linear

inequality constraint respectively.

The MiniZinc model of the generation CSP is given in Figure 4.4b. Lines 6 to 9 uses

three arrays to model a pair (θ, θ′) of partial assignments with the same scope, where we

use an array F to represent the indices set of variables in the common scope, and v1 and

v2 to represent the assigned values in θ and θ′ respectively. Thus, if ∃i ∈ {1, . . . , l} such

that F[i] = k, then xk ∈ S, θ[xk] = v1[k] and θ[xk] = v2[k]. Note that there are variable

symmetries in the array F, and the constraint in line 11 enforces that F[i] < F[i + 1] for all

i = 1, . . . , l − 1. Lines 13 to 19 state two constraints which are the sufficient conditions for

implied satisfaction and betterment by Theorem 5 and 9 respectively. The last constraint

is derived from Theorem 16 and is to ensure the compatibility between the generated

dominance breaking nogoods.
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1 int: n; % number of items
2 int: W; % knapsack capacity
3 array [1..n] of int: p; % profits of items
4 array [1..n] of int: w; % weights of items
5 array [1..n] of var 0..1: x;
6

7 solve maximize sum(i in 1..n)(p[i] * x[i]);
8

9 constraint sum(i in 1..n)(w[i] * x[i]) <= W;

(a) The problem model

1 int: n; % number of items
2 int: W; % knapsack capacity
3 array [1..n] of int: p; % profits of items
4 array [1..n] of int: w; % weights of items
5

6 int: l;
7 array [1..l] of var 1..n: F;
8 array [1..l] of var 0..1: v1;
9 array [1..l] of var 0..1: v2;

10

11 constraint increasing(F);
12

13 var int: p1 = sum(i in 1..l)(p[F[i]] * v1[i]);
14 var int: p2 = sum(i in 1..l)(p[F[i]] * v2[i]);
15 constraint p1 >= p2;
16

17 var int: w1 = sum(i in 1..l)(w[F[i]] * v1[i]);
18 var int: w2 = sum(i in 1..l)(w[F[i]] * v2[i]);
19 constraint w1 <= w2;
20

21 constraint lex_less([-p1, w1]++v1,[-p2, w2]++v2);

(b) The model of generation CSPs

Figure 4.4: Models for the 0-1 knapsack problem in MiniZinc
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In the actual implementation, we modify the publicly available MiniZinc compiler1 to

analyze the compiled FlatZinc model of a COP. Each constraint/objective in the FlatZinc

model corresponds to O(1) constraints in the generation CSP. Such a generation CSP can be

constructed mechanically by analyzing the problem in only one pass in negligible time as

compared to the time for nogood generation and problem-solving.

4.6 Empirical Evaluation

In this section, we put theory into practice and demonstrate the practicality of automatic

dominance breaking in solving COPs. We use the MiniZinc modeling language [100] to

model the problem and use Chuffed [103] as the backend solver for both nogood generation

and problem solving. Note that generating nogoods by solving the generation CSPs and

handling additional nogoods in solving a COP may introduce overheads. There is a trade-off

between the overhead and the efficiency gained by the extra pruning. We aim to empirically

demonstrate the efficiency of nogood generation and the effectiveness of the generated

nogoods in solving COPs.

Our method L-dom attempts to generate and augment the problem models with nogoods

of length up to L. For problem-solving, we compare our method against the basic problem

model (no-dom) and the model with manual dominance breaking constraints (manual).

Our experiments use six benchmarks, 20 instances for each problem configuration:

• Knapsack: the 0-1 knapsack problem is to maximize a linear objective subject to a linear

inequality constraint. The problem ask to select a subset of items where each item i is

assocaited with it profit pi and weight wi. We use instances from an online repository2

where the number of items n = 100, 150, 200, 250, 300. We use the search heuristic to

select an item with the highest pi/wi first.

• DisjKnapsack: the disjunctively constrained knapsack problem [130] is an extension

1https://github.com/MiniZinc/libminizinc

2https://people.eng.unimelb.edu.au/pstuckey/dom-jump/
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of the knapsack problem with additional Boolean disjunction constraints. For each

instance of KP with n items, we augment the instance by randomly picking bηn(n−

1)/2c incompatible pairs of items where η = 0.2%. The search heuristic is the same as

that of Knapsack.

• ConcertSchd: the capacitated concert hall scheduling problem [45] is to maximize a

separable objective subject to alldifferent_except_0 constraints. The problem considers a

set of concerts each having a start time sa, an end time ea, a profit pa and a required

capacity ra. A concert a can only be placed into a hall with capacity ch such that ch ≥ ra.

We follow Gange and Stuckey [45] to generate random instances with 10 halls and n

applications where n = 20, 25, 30, 35, 40, with 1 ≤ sa ≤ ea ≤ 100, 200 ≤ ra, ch ≤ 1000

and 10 ≤ pa
ea−sa+1 .

• MaxCut: the maximum cut problem is to maximize a submodular function on a graph.

For n ∈ {35, 40, 45, 50}, we generate random graphs with n vertices by independently

sampling each edge with probability p = 0.1 whose weights are integers from 1 to 10.

• CombAuc: the combinatorial auction problem is to maximize a linear objective subject to

linear inequality constraints. We generate random instances using the scheme of Balas

and Ho [5], where there are m = 100 items and n = 100, 150, 200, 250, 300 bids in the

instances, and the value of a bidder is selected from [1, 100]. The probability of an

item being covered by a bid is set to 5%.

• SetCover: the set covering problem [59] is to minimize a linear objective subjective

to linear inequality constraints. We generate random instances using the scheme of

Umetani [125] with m = 100 items, n = 100, 150, 200, 250, 300 sets, the covering density

to be 5%.

Please see Chapter 7 for more detailed descriptions of the benchmark problems. The timeout

for the whole solving process (nogood generation + problem-solving) is set to 2 hours, while

we reserve 1 hour for nogood generation. If nogood generation times out, we augment the

problem model with only the nogoods generated so far.
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Figure 4.5: The problem-solving time for different problems
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Figure 4.5 shows the average time for problem-solving in log scale. By comparing the

problem-solving time (represented by solid bars) against no-dom and manual, it is clear

that the generated dominance breaking nogoods can drastically reduce the solving time for

all benchmarks, especially for large and hard instances. More nogood constraints usually

help to reduce the search space as demonstrated in DisjKnapsack, ConcertSchd, MaxCut,

CombAuc and SetCover. The exception is that the solving time of 4-dom is larger than that of

3-dom for all configurations of Knapsack and DisjKnapsack with a relatively small number of

items. The reason is that 3-dom is already efficient in problem-solving, and the overhead of

adding more nogoods does not compensate for the reduced time.

We also study the overall performance with the average total time (generation time +

solving time) as the evaluation metric. Figure 4.6 shows the time for both problem-solving

and nogood generation, where the average solving times are represented by solid bars and

the nogood generation times are represented by diagonal hatch bars. Note that the ratio of

the bars does not reflect the time percentage, and the problem-solving time should not be

read directly as the length of the solid bars. By comparing the length of hatched bars for

2-dom, 3-dom and 4-dom in each benchmark, it is obvious to see that more time is needed

to generate more nogoods. Therefore, even though more dominance breaking nogoods can

help to prune more suboptimal assignments and reduce the time for problem-solving, there

is a trade-off between stronger pruning and the overhead of nogood generation. Still, our

method comes out on top with the appropriate maximum length of nogoods. In most of the

configurations, 3-dom is usually the best, and the average total time is even smaller than

that of manual. The only exception is the time for large instances (n = 50) of MaxCut, where

4-dom is the best in this configuration. We note that the solving time for many instances

exceed the timeout limit, especially for no-dom and manual, and the actual acceleration of

generated nogoods can be even higher.

We give the number of solved instances versus the running time for different methods

in Figure 4.7. We can observe that 3-dom and 4-dom solves more instances than no-dom

and manual within the timeout limit for all benchmarks. On the other hand, 2-dom, 3-dom
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Figure 4.6: The total time (generation + solving) for different problems
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Figure 4.7: The number of solved instances over time for different problems
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and 4-dom usually requires more time than manual before they start to solve any instances,

and this is because the proposed method needs to solve extra generation CSPs to generate

nogood constraints for dominance breaking. The overall conclusion is that the advantage of

automatically generated nogood constraints becomes more obvious for harder instances.

Note that 2-dom and manual have similar performance in Knapsack, MaxCut, CombAuc, and

SetCover, and we give more theoretical analysis in Chapter 7 to explain the similar behaviors.

4.7 Concluding Remarks

In this chapter, automatic dominance breaking is made possible by focusing on nogoods.

Our theorems on sufficient conditions enable us to formulate nogood generation effectively

as constraint satisfaction. An important advantage is the ability to control the strength of

the generated nogoods. Our method discovers dominance breaking nogoods that had not

been discovered before. The method can also be easily integrated into existing constraint

modeling systems or solvers. We demonstrate that the method can generate nogoods that

speed up the solving of constraint optimization problems in a constraint solver by orders of

magnitudes.
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Chapter 5

Optimization Techniques for

Automatic Dominance Breaking

In this chapter, we extend the applicability of automatic dominance breaking with two

theoretical and practical innovations. First, the original method requires all constraints to be

efficiently checkable (EC) to guarantee the efficiency of the nogood generation process. We

prove formally on when and how non-EC constraints can be ignored in nogood generation by

not exploring nogoods that contain variables in the non-EC constraints. This way, sufficient

useful nogoods can still be generated when the number of variables in non-EC constraints

are relatively small compared to all variables of the problem. Second, we show that some

generated nogoods make no contributions in pruning since they are both logically and

propagation redundant [20] with respect to other nogoods. We propose Common Assignment

Elimination to ban generation of such fruitless nogoods, thus speeding up the generation

process substantially. Experimentation confirms the enhanced applicability of our theory-

backed methods, which allows us to tackle benchmarks that could not be handled by the

original method.
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5.1 Handling Non-Efficiently Checkable Constraints

To show that a partial assignment θ dominates another θ′ in a COP P = (X, D, C, f ) by

Theorem 3, the implied satisfaction is a necessary condition, which requires that ∀θ̄′ ∈ DX
θ′ ,

θ̄′ is a solution of P implies that µθ′→θ(θ̄′) ∈ DX
θ is also a solution of P. Recall that a full

assignment θ̄ is a solution of P if and only if θ̄ satisfies all constraints c ∈ C. The practicality

of automatic dominance breaking requires every constraint c ∈ C to be efficiently checkable,

which means there are sufficient conditions on a pair (θ, θ′) of partial assignments to show

that µθ′→θ(θ̄′) satisfies c when θ̄′ satisfies c. This is, however, not always possible. Section 4.3

only give such sufficient conditions for certain classes of constraints. What if P contains

constraints with no known sufficient conditions for implied satisfaction (yet)? We propose a

way to allow skipping the checking of such non-EC constraints and yet some dominance

breaking nogoods can still be found.

We first restate a useful proposition for showing implied satisfaction in Section 4.3. Let

cθ be the constraint obtained by replacing every occurrence of variable x in c by value θ[x].

Proposition 8. Let θ, θ′ ∈ DS be two assignments in a COP P = (X, D, C, f ) over the same scope

S ⊆ X and µθ′→θ : DX
θ′ 7→ DX

θ be the corresponding mutation mapping. If cθ′ ⇒ cθ holds for a

constraint c ∈ C, then θ̄′ satisfies c⇒ θ̄ satisfies c for all θ̄′ ∈ DX
θ′ , where θ̄ = µθ′→θ(θ̄′).

For efficiently checkable constraints, there are sufficient conditions to show that cθ′ ⇒ cθ.

We rely on a useful property to skip checking for non-efficiently checkable constraints.

Lemma 1. Let θ, θ′ ∈ DS be two assignments in a COP P = (X, D, C, f ) over the same scope

S ⊆ X and µθ′→θ : DX
θ′ 7→ DX

θ be the corresponding mutation mapping. Suppose S ∩ var(c) = ∅

for a constraint c ∈ C, then we have θ̄′↓var(c)= µθ′→θ(θ̄′)↓var(c) for every θ̄′ ∈ DX
θ′ .

Proof. Note that S = var(θ) = var(θ′). The mutation mapping µθ′→θ only replaces the

θ′ component of θ̄′ ∈ DX
θ′ with θ, while θ̄′[x] = µθ′→θ(θ̄′)[x] for every x ∈ X \ S. If

var(c) ∩ var(θ) = ∅, then var(c) ⊆ X \ S, and θ̄↓var(c)= µθ′→θ(θ̄′)↓var(c).

Recall that a full assignment satisfies a constraint c if θ̄↓var(c)∈ c. By Lemma 1, when

var(θ) ∩ var(c) = ∅, θ̄′ and µθ′→θ(θ̄′) has the same values assigned to variables in var(c) for
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1 int: l; % scope size
2 int: p; % number of variables in non-effectively checkable constraints
3 array [1..l] of var 1..n: F; % indices of variables in generated nogoods
4 array [1..p] of var 1..n: N; % indices of skipped variables
5

6 constraint forall(i in 1..l, j in 1..p)(F[i] != N[j]);

Figure 5.1: Constraints in a combined model for skipping variables in non-efficiently constraints

all θ̄′ ∈ DX
θ′ . Therefore, they must satisfy or violate the constraint c simultaneously. The pair

(θ, θ′) trivially satisfies implied satisfaction, and do not have to be checked.

Theorem 18. Let θ, θ′ ∈ DS be two assignments in a COP P = (X, D, C1 ∪ C2, f ) over the same

scope S ⊆ X and µθ′→θ : DX
θ′ 7→ DX

θ be the corresponding mutation mapping. If θ and θ′ fulfil that:

(1) for all c ∈ C1, cθ′ ⇒ cθ, and (2) for all c ∈ C2, S ∩ var(c) = ∅, then ∀θ̄′ ∈ DX
θ′ , θ̄′ ∈ sol(P)

implies that µθ′→θ(θ̄′) ∈ sol(P).

Proof. Let θ̄ be µθ′→θ(θ̄′) ∈ DX
θ . Suppose that c ∈ C1. By Proposition 8, since cθ′ ⇒ cθ,

θ̄′ ∈ c ⇒ θ̄ ∈ c. Otherwise, c ∈ C2. Implied satisfaction hold automatically by Lemma 1.

Thus, θ̄′ satisfies all constraints in P implies that θ̄ satisfies all constraints in P. In other

words, θ̄′ ∈ sol(P)⇒ θ̄ ∈ sol(P).

In general, if a constraint c of P is non-efficiently checkable, we can skip solving the

generation CSP for a pair (θ, θ′) of partial assignments when var(θ) ∩ var(c) 6= ∅. By

Theorems 3 and 18, we can still find some pairs (θ, θ′) such that θ dominates θ′ with respect

to P, but the generated nogoods will not involve variables in var(c). In other words, this

method is useful only if var(c) is relatively small with respect to X. Otherwise, very few

nogoods can be generated. As shown in Figure 4.4b, generation CSPs over scopes of the

same size can be combined into one generation model with element constraints. We can also

add an extra constraint into such a model as shown in Figure 5.1, so that θ and θ′ containing

variables in var(c) would not be explored for identifying dominance breaking nogoods.
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5.2 Common Assignment Elimination

The method of automatic dominance breaking constructs multiple generation CSPs for a

COP P = (X, D, C, f ) to generate dominance breaking nogoods of different lengths, and

the constraint set C is augmented with all generated dominance breaking nogoods. In a

constraint programming solver, the domain of a COP P = (X, D, C, f ) is usually enforced

to be generalized arc consistent [90] with respect to all constraints c ∈ C. By Proposition 1

in Chapter 2, if ¬θ̃ and ¬θ are two nogood constraints such that θ̃ is a subset of θ, the

propagator maintaining GAC for ¬θ̃ is stronger than that for ¬θ. In other words, the

propagator for ¬θ will not remove any value from the domain, and hence is useless in a

constraint programming solver. Section 4.5 describes a method to add a nogood constraint

into generation CSPs to avoid generating redundant nogoods. However, a large amount of

nogoods in generation CSPs may introduce overheads and hence hinder the efficiency of

the nogood generation. In this section, we propose to further enhance generation CSPs with

extra conditions to avoid generating redundant nogood constraints derived from pairs of

partial assignments with common literals.

By Chapter 4, a pair (θ, θ′) of partial assignments over the same scope is a solution of a

generation CSP when they satisfy:

• unequal pair: θ 6= θ′,

• sufficient conditions for betterment of f (Section 4.2),

• sufficient conditions for implied satisfaction of constraints in C (Section 4.3), and

• sufficient conditions for compatibility (Section 4.4).

The conditions can be modelled as constraints over the pair (θ, θ′) in generation CSPs. If

(θ, θ′) satisfies the constraints implies that another pair (θ̃, θ̃′) also satisfies the constraints

such that θ̃′ ⊂ θ′, then ¬θ′ is a redundant dominance breaking nogood with respect to

¬θ̃′. In particular, we are interested in the case where a variable x is assigned to the same

value in both θ and θ′. We say that a literal (x = v) is commonly eliminable with respect to a
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constraint c in generation CSPs if and only if for all pairs (θ, θ′) such that (x = v) ∈ θ ∩ θ′,

(θ, θ′) satisfies c implies that (θ̃, θ̃′) satisfies c where θ̃ = θ \ {x = v}, θ̃′ = θ′ \ {x = v}.

Immediately, we have the following theorem.

Theorem 19. Let c be a constraint over a pair of partial assignments. If a literal (x = v) is

commonly eliminable with respect to c, then for every pair (θ, θ′) of partial assignments satisfying c,

there must be another pair (θ̃, θ̃′) also satisfies c such that (x = v) /∈ θ̃ ∩ θ̃′.

Proof. Suppose that (x = v) is not a common literal of (θ, θ′), i.e. (x = v) /∈ θ ∩ θ′. The

theorem holds by letting θ̃ = θ and θ̃′ = θ′.

Otherwise, (x = v) ∈ θ ∩ θ′. Let θ̃ = θ \ {x = v} and θ̃′ = θ′ \ {x = v}. Immediately, we

have θ̃′ ⊂ θ′ and (x = v) /∈ θ̃′ ∩ θ̃. Since (x = v) is commonly eliminable with respect to c,

(θ, θ′) satisfies c implies that (θ̃, θ̃′) satisfies c.

Theorem 19 implies that if a literal (x = v) is commonly eliminable with respect

to all constraints in generation CSPs, then we can enhance a generation CSP for a pair

(θ, θ′) with an extra condition θ[x] 6= v ∨ θ′[x] 6= v when x ∈ var(θ) to avoid generating

redundant dominance breaking nogoods. Further, if for every value v ∈ D(x), (x = v) is

commonly eliminable with respect to the generation CSP, then we can add a more succinct

constraint (θ[x] 6= θ′[x]) to generation CSP when x ∈ var(θ). The technique is called

Common Assignment Elimination (CAE). The collective strength of the resulting dominance

nogoods in pruning search space for P after applying CAE remains unchanged. Thus, the

key question is how to show that a literal is commonly eliminable.

By definition, checking eliminability of a literal requires us to go through all constraints

in generation CSPs. It is straightforward to show that any arbitrary literal is commonly

eliminable with respect to the constraint for the unequal pair condition.

Proposition 9. Let (θ, θ′) be a pair of partial assignments of a COP P over the same scope. If

(x = v) ∈ θ ∩ θ′, then (θ 6= θ′)⇒ (θ̃ 6= θ̃′), where (θ̃, θ̃′) = (θ \ {x = v}, θ′ \ {x = v}).

What remains is to analyze what kind of literals are commonly eliminable with respect

to constraints representing sufficient conditions for the betterment, implied satisfaction and
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compatibility conditions. Recall from Sections 4.2 to 4.4 that such sufficient conditions are

all arisen from the objective and constraints of a constraint optimization problem. In the

remaining of this section, we will give commonly eliminable literals for specific objectives

and constraints respectively, and we will summarize how to apply common assignment

elimination in Section 5.2.4.

5.2.1 Eliminability for Betterment

This subsection gives commonly eliminable literals with respect to sufficient conditions for

betterment in Section 4.2. For the ease of presentation, we restate the sufficient conditions

before giving the results of commonly eliminable literals. We consider two types of objectives:

separable objectives and supermodular/submodular objectives.

Separable Objectives

A function f is separable if it can be written as a sum of functions of individual variables,

i.e. f (θ̄) = f1(v1) + · · · + fn(vn) for a full assignment θ̄ = {(xi = vi) | xi ∈ X}, where

each component is fi : Z → R. The projection of a separable function f is defined as

f ↓S (θ) = ∑xi∈S fi(θ[xi]) for a partial assignment θ ∈ DS. By Theorem 5, the sufficient

condition for betterment is:

f↓S(θ) ≤ f↓S(θ
′), (5.1)

where S is the scope of θ and θ′. The theorem below states that an arbitrary assignment

(x = v) is commonly eliminable with respect to (5.1) if f is separable.

Theorem 20. Let θ, θ′ ∈ DS be two assignments in a COP P = (X, D, C, f ) over the same scope

S ⊆ X, and the objective f be a separable function. If (xt = vt) ∈ θ ∩ θ′, then f↓S(θ) ≤ f↓S(θ
′)

implies that f↓S̃(θ̃) ≤ f↓S̃(θ̃
′) where S = var(θ) = var(θ′), S̃ = S \ {xt}, θ̃ = θ \ {xt = vt} and

θ̃′ = θ′ \ {xt = vt}.

Proof. If f↓S(θ) ≤ f↓S(θ
′), then

f↓S̃(θ̃) = f↓S(θ)− ft(vt) ≤ f↓S(θ
′)− ft(vt) = f↓S̃(θ̃

′).
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Therefore, f↓S (θ) ≤ f↓S (θ′) implies that f↓S̃ (θ̃) ≤ f↓S̃ (θ̃′).

Supermodular and Submodular Objectives

A supermodular function is a set function g : 2U 7→ R that assigns a value g(V) ∈ R to each

subset V of the universe U such that

g(V ∪ T)− g(V) ≤ g(V ′ ∪ T)− g(V ′)

for every V, V ′ ⊆ U where V ⊆ V ′ and T ⊆ U \V ′. A set function g is submodular if −g is

supermodular. Given an assignment θ over 0-1 variables, we define a set V(θ) = {i | θ[xi] =

1}. Recall in Section 4.2.2 that a function f on 0-1 variables is equivalent to a supermodular

function g if f (θ̄) = g(V(θ̄)) for any full assignment θ̄ of P. By Theorem 6, the sufficient

condition for betterment is:

f↓S(θ) ≤ f↓S(θ
′) ∧V(θ) ⊆ V(θ′), (5.2)

Removing a common assignment (x = 0) from θ and θ′ does not affect the represented set

V(θ) and V(θ′). Thus, the condition (5.2) holds for θ̃ = θ \ (x = v) and θ̃′ = θ′ \ (x = v)

whenever it holds for θ and θ′.

Theorem 21. Let θ, θ′ ∈ DS be two assignments in a COP P = (X, D, C, f ) over the same scope

S ⊆ X, and the objective f be a function on 0-1 variables that is equivalent to a supermodular

function g. If (xt = 0) ∈ θ ∩ θ′, then

(1) g(V(θ)) ≤ g(V(θ′))⇒ g(V(θ̃)) ≤ g(V(θ̃′))

(2) V(θ) ⊆ V(θ′)⇒ V(θ̃) ⊆ V(θ̃′)

where θ̃ = θ \ {xt = 0} and θ̃′ = θ′ \ {xt = 0}.

Proof. Since V(θ) = {i | (xi = 1) ∈ θ}, V(θ̃) = V(θ \ {xt = 0}) = V(θ). Similarly, V(θ̃′) =

V(θ′). If g(V(θ)) ≤ g(V(θ′)), then g(V(θ̃)) = g(V(θ)) ≤ g(V(θ′)) = g(V(θ̃′)). Also, if

V(θ) ⊆ V(θ′), then V(θ̃) = V(θ) ⊆ V(θ′) = V(θ̃′).
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5.2.2 Eliminability for Implied Satisfaction

This subsection gives commonly eliminable literals with respect to sufficient conditions

for implied satisfaction in Section 4.3. Note that by Proposition 2, it is sufficient to show

that cθ′ ⇒ cθ. Again, we will restate the sufficient condition before giving the common

eliminable literals.

Domain Constraints

A domain constraint x ∈ D(x) is a unary constraint that restricts a variable x to take values

from D(x). By Theorem 8, the sufficient condition for implied satisfaction only requires that

θ[x] ∈ D(x). Any arbitrary assignment (x = v) is commonly eliminable with respect to the

sufficient condition for domain constraints.

Theorem 22. Let θ, θ′ ∈ DS be two assignments in a COP P = (X, D, C, f ) over the same scope

S ⊆ X, and xi ∈ D(xi) be a domain constraint. If (xt = vt) ∈ θ ∩ θ′, then cθ′ ⇒ cθ implies that

cθ̃′ ⇒ cθ̃, where θ̃ = θ \ {xt = vt} and θ̃′ = θ′ \ {xt = vt}.

Proof. There are two cases. If xi and xt are the same, then so must vi and vt by definition

of a partial assignment, and xi /∈ var(θ̃). We have cθ̃′ ⇔ c ⇔ cθ̃. Otherwise, xi and xt are

different, then we have cθ̃′ ⇔ cθ′ ⇒ cθ ⇔ cθ̃.

Linear Inequality Constraints

A linear inequality constraint has the form ∑ wixi ≤ b where wi, b ∈ R. By Theorem 9, the

sufficient condition for implied satisfaction is:

∑
xi∈S′

wiθ[xi] ≤ ∑
xi∈S′

wiθ
′[xi], (5.3)

The sufficient condition still holds when any arbitrary common literal (x = v) ∈ θ ∩ θ′ is

removed from θ and θ′.

Theorem 23. Let θ, θ′ ∈ DS be two assignments in a COP P = (X, D, C, f ) over the same

scope S ⊆ X, and ∑ wixi ≤ b be a linear inequality constraint. If (xt = vt) ∈ θ ∩ θ′, then
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∑(xi=vi)∈θ wivi ≤ ∑(xi=v′i)∈θ′ wiv′i implies that ∑(xi=vi)∈θ̃ wivi ≤ ∑(xi=v′i)∈θ̃′ wiv′i, where θ̃ =

θ \ {xt = vt} and θ̃′ = θ′ \ {xt = vt}.

The proof idea is similar to that of Theorem 20.

Boolean Disjunctions

The Boolean disjunction constraint ∨xi∈Bxi requires that at least one Boolean variable in the

set B takes the true value. It can be extended where Boolean variables are results of binary

comparisons xi ◦i bi where xi ∈ X is a variable, bi ∈ Z is an integer and ◦i ∈ {=, 6=,≥,≤,<

,>} is a binary comparison operator. The sufficient condition for implied satisfaction is:

∨xi∈B(θ
′[xi] ◦i bi)⇒ ∨xi∈B(θ[xi] ◦i bi), (5.4)

Note that a Boolean disjunction constraint has the property that e ∨ 0 = e where e is a

Boolean expression that returns a Boolean value. Thus, the common assignment (xi = vi)

that results in f alse for a Boolean expression (θ[xi] ◦i bi), then it does not affect the validity

of the sufficient condition for implied satisfaction.

Theorem 24. Let θ, θ′ ∈ DS be two assignments in a COP P = (X, D, C, f ) over the same

scope S ⊆ X, and c be a Boolean disjunction constraint ∨xi∈B(xi ◦i bi). If (xt = vt) ∈ θ ∩ θ′ and

vt ◦t bt = f alse, then ∨(xi=v′i)∈θ′(v′i ◦i bi)⇒ ∨(xi=vi)∈θ(vi ◦i bi) implies that ∨(xi=v′i)∈θ̃′(v
′
i ◦i bi)⇒

∨(xi=vi)∈θ̃(vi ◦i bi), where θ̃ = θ \ {xt = vt} and θ̃′ = θ′ \ {xt = vt}.

Proof. Since (vt ◦t bt) is f alse, we have

∨(xi=v′i)∈θ̃′(v
′
i ◦i bi) = ∨(xi=v′i)∈θ̃′(v

′
i ◦i bi) ∨ f alse = ∨(xi=v′i)∈θ′(v

′
i ◦i bi)

Similarly, we have

∨(xi=vi)∈θ̃(vi ◦i bi) = ∨(xi=vi)∈θ̃(vi ◦i bi) ∨ f alse = ∨(xi=vi)∈θ(vi ◦i bi)

Thus, we can show that ∨(xi=v′i)∈θ′(v′i ◦i bi)⇒ ∨(xi=vi)∈θ(vi ◦i bi) implies ∨(xi=v′i)∈θ̃′(v
′
i ◦i bi)⇒

∨(xi=vi)∈θ̃(vi ◦i bi).
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Counting Constraints

Section 4.3.4 introduces two basic counting constraints atleast(T, V, k) and atmost(T, V, k)

where T ⊆ X is a set of variables, V is a set of values, and k ∈ N is an integer. More

sophisticated counting constraints such as an alldifferent constraint, an alldifferent_except_0

constraint, an among constraint and a global cardinality constraint can be treated as a

conjunction of several atleast and atmost constraints. By Theorems 12 and 13, the sufficient

condition for an atleast constraint is

|{x | θ[x] ∈ V ∧ x ∈ S′}| ≥ |{x | θ′[x] ∈ V ∧ x ∈ S′}|, (5.5)

and the sufficient condition for an atmost constraint is

|{x | θ[x] ∈ V ∧ x ∈ S′}| ≤ |{x | θ′[x] ∈ V ∧ x ∈ S′}|, (5.6)

where S′ = T ∩ S and S = var(θ) = var(θ′). Removing an arbitrary common assignment

x = v from θ and θ′ does not affect the validity of (5.5) and (5.6).

Theorem 25. Let θ, θ′ ∈ DS be two assignments in a COP P = (X, D, C, f ) over the same scope

S ⊆ X, and atleast(T, V, k) and atmost(T, V, k) be two constraints where T ⊆ X is a set of variables,

V is a set of values, and k ∈N is an integer. If (xt = vt) ∈ θ ∩ θ′, then

(|{x | θ[x] ∈ V ∧ x ∈ S′}| ≥ |{x | θ′[x] ∈ V ∧ x ∈ S′}|)

⇒(|{x | θ̃[x] ∈ V ∧ x ∈ S̃′}| ≥ |{x | θ̃′[x] ∈ V ∧ x ∈ S̃′}|),

and
(|{x | θ[x] ∈ V ∧ x ∈ S′}| ≤ |{x | θ′[x] ∈ V ∧ x ∈ S′}|)

⇒(|{x | θ̃[x] ∈ V ∧ x ∈ S̃′}| ≤ |{x | θ̃′[x] ∈ V ∧ x ∈ S̃′}|),

where S′ = S ∩ T, θ̃ = θ \ {x = v}, θ̃′ = θ′ \ {x = v}, and S̃′ = var(θ̃) ∩ T.

Proof. For the ease of presentation, we let d = |{x | θ[x] ∈ V ∧ x ∈ S′}|, d′ = |{x | θ′[x] ∈

V ∧ x ∈ S′}|, d̃ = |{x | θ̃[x] ∈ V ∧ x ∈ S̃′}| and d̃′ = |{x | θ̃′[x] ∈ V ∧ x ∈ S̃′}|. There are

two cases. If xt /∈ T, then d = d̃, and d′ = d̃′, the statement holds automatically. Otherwise,

xt ∈ T, and we have d = d̃ + 1, and d′ = d̃′ + 1, which implies that the inequalities also hold
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for θ̃ and θ̃′.

It is straightforward to see that an arbitrary assignment is also commonly eliminable

with respect to sufficient conditions for other counting constraints since they can be formed

as conjunctions of several atleast and atmost constraints.

5.2.3 Eliminability for Compatibility

Recall from Section 4.4 that the compatibility of generated dominance breaking nogoods

can be achieved by enforcing

(h1↓S(θ), . . . , hm↓S(θ)) <lex (h1↓S(θ
′), . . . , hm↓S(θ

′)), (5.7)

between θ and θ′, where S = var(θ) = var(θ′), and h1, . . . , hm are sensitive functions arisen

from the objective and constraints of the target COP. Suppose (xt = vt) ∈ θ ∩ θ′ is a common

literal, and θ̃ = θ \ (xt = vt) and θ̃′ \ (xt = vt) are obtained by removing the common

literal such that S̃ = var(θ̃) = var(θ̃′). The following gives a sufficient condition for the

eliminability of a literal with respect to the generalized lexicographical ordering constraint

in (5.7).

Proposition 10. If h1, . . . , hm are sensitive functions such that for each function hi, we have

hi↓S(θ) < hi↓S(θ
′) implies that hi↓S̃(θ̃) < hi↓S̃(θ̃

′), then

(h1↓S(θ), . . . , hm↓S(θ)) <lex (h1↓S(θ
′), . . . , hm↓S(θ

′))

⇒(h1↓S̃(θ̃), . . . , hm↓S̃(θ̃)) <lex (h1↓S̃(θ̃
′), . . . , hm↓S̃(θ̃

′)),

where S = var(θ) = var(θ′) and S̃ = var(θ̃) = var(θ̃′).

Proposition 10 implies that we can consider eliminable literals with respect to the

condition hi↓S(θ) < hi↓S(θ
′) for each sensitive function hi individually. It is straightforward

to see that the commonly eliminable literals with respect to hi↓S(θ) < hi↓S(θ
′) are the same

as those with respect to betterment for separable objectives and supermodular objectives,

and those with respect to implied satisfaction for linear inequality constraints and counting

constraints when the sensitive functions are defined as those in Section 4.4.2.
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Proposition 11. Suppose f is a separable function such that f (θ̄) = ∑ fi(θ̄[xi]) for all θ̄ ∈ DX,

and vt ∈ D(xt) is an arbitrary value. If we define the projection function of f to be f ↓S (θ) =

∑xi∈S fi(θ[xi]) for all S ⊆ X, then f↓S(θ) < f↓S(θ
′) implies that f↓S̃(θ̃) < f↓S̃(θ̃

′).

Proposition 12. Suppose f is a function that is equivalent to a supermodular function g, and

vt = 0 ∈ D(xt). If we define the projection function of f to be f ↓S (θ) = g(S(θ)) where

S(θ) = {i | θ[xi] = 1}, then f↓S(θ) < h↓S(θ
′) implies that f↓S̃(θ̃) < f↓S̃(θ̃

′).

Proposition 13. Suppose c is a linear inequality constraint (∑ wixi ≤ b), and vt ∈ D(xt) is

an arbitrary value. If we define a function h : DX 7→ R such that h(θ̄) = ∑ wi θ̄[xi] for all full

assignment θ̄ ∈ DX, and the projection function h↓S(θ) = ∑xi∈S wiθ[xi], then h↓S(θ) < h↓S(θ
′)

implies that h↓S̃(θ̃) < h↓S̃(θ̃
′).

Proposition 14. Suppose c is a constraint atmost(S, V, k), and vt ∈ D(xt) is an arbitrary value. If

we define a function h : DX 7→ R such that h(θ̄) = |{x | θ̄[x] ∈ V}| for a full assignment θ̄ ∈ DX,

and the projection function h↓S(θ) = |{x | θ[x] ∈ V ∧ x ∈ S}|, then h↓S(θ) < h↓S(θ
′) implies that

h↓S̃(θ̃) < h↓S̃(θ̃
′).

Proposition 15. Suppose c is a constraint atleast(S, V, k), and vt ∈ D(xt) is an arbitrary value.

If we define a function h : DX 7→ R such that h(θ̄) = −|{x | θ̄[x] ∈ V}| for all full assignment

θ̄ ∈ DX, and the projection function h↓S(θ) = −|{x | θ[x] ∈ V ∧ x ∈ S}|, then h↓S(θ) < h↓S(θ
′)

implies that h↓S̃(θ̃) < h↓S̃(θ̃
′).

The proof of Proposition 11 to 15 are similar to those for Theorems 20 to 25. In other

words, commonly eliminable literals for each variable can be obtained from the involved

objective and constraints in the target COP.

5.2.4 Applying Common Assignment Elimination

In this section, we describe and showcase how to apply the technique of common assignment

elimination. We summarize the results of commonly eliminable literals in Table 5.1, and

the procedure to collect commonly eliminable literals for each variable is described in

Algorithm 2. When constructing the generation CSPs for a constraint optimization problem,
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Objective/Constraint types Commonly Eliminable Literals
Separable objectives xi = vi, ∀vi ∈ D(xi)
Supermodular/submodular objectives xi = 0
Domain constraints xi = vi, ∀vi ∈ D(xi)
Linear inequality constraints xi = vi, ∀vi ∈ D(xi)
Boolean disjunction constraints xi = vi s.t. vi ◦i bi = f alse
Counting constraints xi = vi, ∀vi ∈ D(xi)

Table 5.1: Commonly eliminable literals for a variable xi

Algorithm 2 Common assignment elimination
Input: a COP P = (X, D, C, f )

1: Initialize Q← ∅
2: for each variable xt ∈ X do
3: V ← {xt = v | v ∈ D(xt)}
4: if xt is an argument of a supermodular/submodular objective then
5: V ← V ∩ {xt = 0}
6: end if
7: if xt ∈ var(c) where c ≡ (∨xi∈Bxi ◦i bi) then
8: V ← V ∩ {xt = v | v ∈ V s.t. v ◦t bt = f alse}
9: end if

10: if |V| == |D(xt)| then
11: Q← Q ∪ {xt ∈ S⇒ θ[xt] 6= θ′[xt]}
12: else
13: Q← Q ∪ {(xt = v) /∈ θ ∩ θ′ | v ∈ V}
14: end if
15: end for
16: Return Q

we collect the common eliminable literals for each variable. The set of commonly eliminable

literals consist of all possible literals for a variable xt initially (Line 3), and we shrink

the set by checking whether xt is involved in a supermodular/submodular objective or a

Boolean disjunction constraint (Line 4 to 9). Finally, the constraints for common assignment

elimination are collected and later added to generation CSPs for boosting the generation

of dominance breaking nogoods. Note that when (xt = v) is commonly eliminable with

respect to all sufficient conditions in the generation CSP, a more succinct constraint is added

to the set Q (Line 11).

In the following, we give an example to show CAE in action.
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Example 17. Consider the COP in (1.1) and the generation CSP in (4.2). The COP has a linear

objective function and a linear inequality constraint. Following Algorithm 2, any arbitrary literal

for each variable x ∈ X is commonly eliminable. Thus, we add two constraints θ[x3] 6= θ′[x3] and

θ[x4] 6= θ′[x4] to (4.2).

Suppose we extend P with a Boolean disjunction constraint x1 ∨ x4. By Theorem 24, only

(x4 = 0) is commonly eliminable literals for x4 with respect to the sufficient condition for x1 ∨ x4,

while any arbitrary assignment xi = v is commonly eliminable with respect to the objective and other

constraints. Thus, we only add the constraint θ[x4] 6= 0∨ θ′[x4] 6= 0 and θ[x3] 6= θ′[x3] to (4.2) for

common assignment elimination.

When we combine multiple generation CSPs over scopes of the same size into one

succinct model, we can still apply CAE by adding the constraint (x ∈ var(θ)) ⇒ (θ[x] 6=

v ∨ θ′[x] 6= v) for a commonly eliminable literal (x = v) and the constraint (x ∈ var(θ))⇒

(θ[x] 6= θ′[x]) when literals (x = v) for values in the domain D(x) are all commonly

eliminable.

5.3 Experimental Evaluation

We perform experiments on Xeon E7-4830 2.20GHz processors using MiniZinc 2.4.3 [100] to

model both the benchmark problems and the corresponding dominance breaking nogood

generation respectively. The back-end solver is Chuffed [103]. We use eight benchmark

problems, and generate 20 instances for each problem configuration in order to give mean-

ingful comparison. There are six benchmarks including Knapsack, DisjKnapsack, ConcertSched,

MaxCut, SetCover and CombAuc are the same as that in Section 4.6. We also introduce two

additional benchmarks:

• KnapsackSide-n are extensions of the 0-1 knapsack problems to showcase the usefulness

of Theorem 18. An instance with n items is augmented with b0.02nc table constraints,

in which we randomly select three variables xi1 , xi2 , xi3 and sample each tuple from

D(xi1)× D(xi2)× D(xi3) with probability 0.5. Note that side constraints can also be
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added to other benchmark problems.

• PCBoard-n-m are PC board manufacturing problems [91] with n components and m

devices, where there are linear inequality constraints and a linear objective. The model

is from a public MiniZinc repository1. Due to the problem structure, the length of

dominance breaking nogoods is at least 4.

Note that the original method cannot handle KnapsackSide because of the side constraints. In

addition, nogood generation for PCBoard was too time-consuming with the original method,

and the benefits in search reduction cannot compensate the overhead. We use the search

strategies specified in the public models in solving the COPs, and the default of Chuffed

for the generation models. For all benchmarks, we attempt to generate all dominance

breaking nogoods of length up to L without CAE (L-dom) or with CAE (L-dom(*)) as per

our proposal.

5.3.1 Comparison of Generation Time

We use a uniform timeout limit of 1 hour for nogood generation. Figures 5.2 and 5.3 show

the time of nogood generation in log scale. The CAE technique clearly reduces the nogood

generation time for all benchmarks. Note that generating long nogoods without CAE could

time out for some large instances, and the difference between 4-dom and 4-dom(*) (between

6-dom and 6-dom(*) for PCBoard) can be more pronounced.

The detailed statistics of the generation times is also included in Table A.2. Let tg(L)

and t∗g(L) denote the average time for generating nogoods of length up to L without and

with CAE respectively. We also compute the percentage decrease of generation time %g, where

%g(L) =
tg(L)−t∗g(L)

tg(L) . We only compare L-dom and L-dom(*) when both of them do not time

out. The trends in Knapsack, DisjKnapsack, ConcertSched, MaxCut, CombAuc and SetCover are

similar. The percentage decrease is up to 80.87% for L = 2, up to 91.42% for L = 3 and up

to 97.59% for L = 4. As for PCBoard, 4-dom(*) and 5-dom(*) reduce up to 86.83%, 97.17%

1https://people.eng.unimelb.edu.au/pstuckey/dominance/
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Figure 5.2: Comparisons of the generation time for Knapsack, DisjKnapsack, ConcertSched and MaxCut
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Figure 5.3: Comparisions of the generation time for CombAuc, SetCover, KnapsackSide and PCBoard
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generation time compared with 4-dom and 5-dom respectively. The 6-dom method time out

for all problem sizes, while 6-dom(*) can generate all desired nogoods within 20 minutes.

The benefits of CAE become more significant as we attempt to generate longer nogoods.

5.3.2 Comparison of Overall Performance

We study the overall performance with the total time (generation time + solving time) as

the evaluation metric. The timeout for the whole solving process (nogood generation +

problem-solving) is set to 2 hours, while we keep the timeout for nogood generation as

1 hour. If nogood generation times out, we augment the problem model with only the

nogoods generated so far. We also perform experiments using no dominance breaking

constraint (no-dom) and using manual dominance breaking constraints (manual) from the

literature [24, 45] , where the timeout is set to 2 hours. Figures 5.4 and 5.5 show the average

solving (solid bars) and generation time (diagonal hatch bars) in log scale, where the bars for

problem-solving time are stacked on the bars for generation time. Automatic dominance

breaking outperforms manual in almost all benchmarks even before applying CAE. The

exception is PCBoard, where the method of automatic dominance breaking outperforms

manual only after CAE is applied.

The detailed statistics of the total times is also included in Table A.3. To compare the

total time for L-dom and L-dom(*), we also compute the percentage decrease of total time %t

for measurement, i.e. %t(L) = t(L)−t∗(L)
t(L) , where t(L) and t∗(L) are the average total time of

COPs augmented with generated nogood of length up to L. In general, the performance

gain of CAE depends on whether nogood generation takes a large part in the whole solving

process. The problem structures of Knapsack, DisjKnapsack and KnapsackSide are similar,

where the problem augmented with nogoods of length up to 3 are usually the best. The

percentage decrease in runtime is at least 42.73% and at most 85.03% after CAE is applied.

For ConcertSched, 3-dom and 3-dom(*) are usually the best, and %t is at most 83.78%. As for

MaxCut, 4-dom(*) is the best for large instances, which reduce 22.36% time than 4-dom in

MaxCut-50. PCBoard has the most to gain from CAE, which demands for longer dominance
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Figure 5.4: Comparisons of the total time for Knapsack, DisjKnapsack, ConcertSched and MaxCut
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Figure 5.5: Comparisons of the total time for CombAuc, SetCover, KnapsackSide and PCBoard
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breaking nogoods. The method 5-dom is usually the best when CAE is not applied, but

its overall runtimes in all configurations are still than the solving tiem of manual. After

applying the technique, 6-dom(*) comes out on top, which reduces from 5-dom by 3213.74

seconds and 6-dom by 3777.22 seconds on average. The percentage decrease of 6-dom(*)

can be as much as 92.85% compared with 6-dom.

Note that the automatically generated dominance breaking nogoods are always stronger

in search space reduction when L is large. If we compare L-dom and L-dom(*), the problem-

solving times are usually the same, which is consistent with Proposition 1. The only

exceptions are large instances of Knapsack, DisjKnapsack and KnapsackSide. For these problems,

both 4-dom and 4-dom(*) cannot finish the process of nogood generation completely within

one hour, but 4-dom(*) generates more nogoods than 4-dom. In Knapsack and KnapsackSide,

the problem-solving time slightly increases due to the overhead introduced by extra nogoods,

while the benefits from the reduction of search space wins over the overhead in DisjKnapsack.

5.4 Concluding Remarks

In this chapter, we enlarge the class of problems that can benefit from the method of

automatic dominance breaking. Our specific contributions are threefold. First, we remove

a restriction of the original method for automatic dominance breaking that all constraints

must be efficiently checkable, and demonstrate that the method generates enough nogoods

to speed up the solving of problems with small-scope non-EC side constraints. Second,

we present the technique called common assignment elimination to avoid the generation

of unnecessary nogoods and yet maintain the pruning strength of the generated nogoods.

Third, our theory is backed by extensive empirical evaluation, and the results show that the

two proposed innovations not only make automatic dominance breaking applicable to more

constraint optimization problems, but also substantially improve the overall efficiency.
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Chapter 6

Exploiting Functional Constraints in

Nogood Generation

Chapters 4 presents the method of automatic dominance breaking for a class of COPs, which

can identify dominance breaking constraints that are stronger than the manual ones. Yet,

the method of automatic dominance breaking is restricted to COPs with only objectives

and constraints that are all known to be efficiently checkable. For example, in order to apply

automatic dominance breaking to a COP, the objective is required to be either a separable

function or a submodular function. This prevents the use of automatic dominance breaking

for COPs with varying objectives and constraints, especially the ones with nested function

calls.

Functional expressions are ubiquitous in problem modeling, while the objective and

constraints with functional expressions are usually not efficiently checkable. In practice,

however, COPs are usually specified in a high-level modeling language [40, 100] and

normalized/flattened into a form with only standard constraints.

Example 18. Consider a simple COP which minimizes the objective max(z1, z2) + 4z3 subject to

the constraint 2z1 + 3z2 ∗ z3 ≤ 5, where z1, z2, z3 ∈ {1, 2, 3}. The objective with the max function

and the constraint with the multiplying function are not efficiently checkable. After normalization,
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the COP can become:

minimize obj

subject to obj = y1 + 4z3, y1 = max(z1, z2),

y2 ≤ 5, y2 = 2z1 − 3y3, y3 = z2 ∗ z3,

z1, z2, z3 ∈ {1, 2, 3}, y1, y2, y3, obj ∈ Z

(6.1)

Note that y1, y2, y3 and obj are newly introduced variables, and are functionally defined by

y1 = max(z1, z2), y2 = 2z1 − 3y3, y3 = z2 ∗ z3 and obj = y1 + 4z3 respectively. We call these

functional constraints, while y2 ≤ 5 is a non-functional constraint.

In this chapter, we propose to exploit functional constraints to identify useful dominance

relations in COPs with nested function calls. We first generalize the theory of dominance to

normalized COPs which contain functionally defined variables and functional constraints.

We present a rewriting system for automatic derivation of sufficient conditions for dominance

relations in COPs based on functional constraints and their special properties such as

monotonicity, commutativity and associativity, and submodularity. The proposed method is

implemented on top of the MiniZinc compiler [100]. Experimentation on various benchmarks

confirms the superior efficiency of the generated nogoods to solve problems with ineffective

or no known dominance breaking constraints in the literature.

6.1 Functional Constraints and Dominance

In this chapter, we assume that a COP P = (X, D, C, obj) is the result of applying some sort

of flattening procedure, such as the one used in the MiniZinc compiler [88] and similar to

that shown in Example 18, to a problem model. Therefore, we have a set CY of functional

constraints, each defining a variable y ∈ Y, and a set of non-functional constraints. Our

proposed method utilizes the functional constraints and the properties of functions to derive

sufficient conditions for betterment and implied satisfaction as shown in the following

example.
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Example 19. Consider the COP in (6.1) and θ, θ′ ∈ DS where S = {z1, z2}. Our aim is to find

sufficient conditions over θ and θ′ that imply all full assignments in DX
θ′ can be removed. Suppose

we only consider full assignments that satisfy all functional constraints in (6.1). For each full

assignment θ̄′ ∈ DX
θ′ , we let θ̄ ∈ DX

θ denote a corresponding full assignment such that θ̄[z3] = θ̄′[z3].

By Theorem 3, if we have (a) betterment: ∀θ̄′ ∈ DX
θ′ , θ̄[obj] ≤ θ̄′[obj], (b) implied satisfaction:

∀θ̄′ ∈ DX
θ′ , θ̄[y2] ≤ θ̄′[y2], and (c) θ 6= θ′, then θ̄′ is dominated by θ̄ and hence can be removed. We

can find sufficient conditions for betterment as follows:

• Variable obj is defined by obj = y1 + 4z3. If we have

∀θ̄′ ∈ DX
θ′ , θ̄[y1] + 4θ̄[z3] ≤ θ̄′[y1] + 4θ̄′[z3], (6.2)

then the betterment condition must hold since θ̄ and θ̄′ satisfy all functional constraints.

• Variable y1 is defined by y1 = max(z1, z2). It suffices to show that

∀θ̄′ ∈ DX
θ′ , max(θ̄[z1], θ̄[z2]) + θ̄[z3] ≤ max(θ̄′[z1], θ̄′[z2]) + θ̄′[z3]. (6.3)

• The summation function is monotonically increasing, (6.3) must be true if we have

(∀θ̄′ ∈ DX
θ′ , max(θ̄[z1], θ̄[z2]) ≤ max(θ̄′[z1], θ̄′[z2])) ∧ (∀θ̄′ ∈ DX

θ′ , θ̄[z3] ≤ θ̄′[z3]) (6.4)

• Since θ̄[z3] ≤ θ̄′[z3] for all θ̄′ ∈ DX
θ′ , the second inequality θ̄[z3] ≤ θ̄′[z3] in (6.4) must hold.

We also have θ̄[z1] = θ[z1], θ̄[z2] = θ[z2], θ̄′[z1] = θ′[z1], and θ̄′[z2] = θ′[z2], and therefore

the condition (6.4) is equivalent to

max(θ[z1], θ[z2]) ≤ max(θ′[z1], θ′[z2]). (6.5)

Thus, if θ and θ′ satisfy (6.5), the betterment condition must hold.

Similarly, we can find the sufficient condition for implied satisfaction as follows:

• Variable y2 is defined by y2 = 2z1 − 3y3, the implied satisfaction must be true if

(∀θ̄′ ∈ DX
θ′ , 2θ̄[z1] ≤ 2θ̄′[z1]) ∧ (∀θ̄′ ∈ DX

θ′ , 3θ̄[y3] ≥ 3θ̄′[y3]) (6.6)
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• Variable y3 is defined by y3 = z2 ∗ z3. The value for z2, z3 must be greater than 0. Therefore,

3θ̄[y3] ≥ 3θ̄′[y3] must hold if

(∀θ̄′ ∈ DX
θ′ , θ̄[z2] ≥ θ̄′[z2]) ∧ (∀θ̄′ ∈ DX

θ′ , θ̄[z3] ≥ θ̄′[z3]). (6.7)

Since θ̄[z3] = θ̄′[z3] for all θ̄′ ∈ DX
θ′ , the latter condition must hold.

• By definitions, we have θ̄[z1] = θ[z1], θ̄[z2] = θ[z2], θ̄′[z1] = θ′[z1], and θ̄′[z2] = θ′[z2], and

therefore (6.6) and (6.7) must hold if

θ[z1] ≤ θ′[z1] ∧ θ[z2] ≥ θ′[z2] (6.8)

In other words, if θ and θ′ fulfill (6.5) and (6.8), then θ and θ′ satisfy the betterment and im-

plied satisfaction conditions. By Theorem 15, we can add the lexicographic ordering constraint

(θ[z1], θ[z2]) <lex (θ′[z1], θ′[z2]) to ensure the compatibility of generated nogoods. One possible solu-

tion of the generation CSP is the pair (θ, θ′) where θ = {z1 = 1, z2 = 2} and θ′ = {z1 = 2, z2 = 1},

and the constraint ¬θ′ ≡ (z1 6= 2∨ z2 6= 1) is a dominance breaking nogood for the COP in (6.1).

Example 19 describe the derivation process for assignments over one scope, and similar

derivation can also be applied to assignments over other scopes to obtain more dominance

breaking nogoods. In the following of this chapter, we automate the derivation process in

Example 19 to derive sufficient conditions over θ and θ′ so that ¬θ′ is a dominance breaking

nogood in a COP. The high-level algorithm for nogood generation is as follows:

1. Choose a cardinality of a scope S.

2. Enumerate all possible scope S with the chosen cardinality. For each S:

(a) Derive sufficient conditions for the betterment and implied satisfaction conditions

and synthesize a generation CSP for S.

(b) Solve all solutions of the generation CSP.

(c) Collect the derived nogoods from the solutions (one nogood from each solution).

3. Add all the collected nogoods to the COP before solving.
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The key step is to synthesize a generation CSP for each scope considering the functional

constraints. Note that the high-level algorithm for nogood generation is different from that

in Chapter 4, where one generation CSP is constructed for all scopes of the same size.

We now generalize the theory of dominance to normalized COPs. For ease of pre-

sentation, we associate each non-functional constraint c ∈ (C \ CY) with a reified variable

b ∈ {0, 1}, where a full assignment θ̄ satisfies c if and only if θ̄[b] = 1. In other words,

we treat each constraint c ∈ (C \ CY) as a function returning 0/1 and define a (reified)

functional constraint cb ≡ (b = c(xi1 , . . . , xik)). If θ̄[b] ≥ θ̄′[b] for two full assignments θ̄

and θ̄′, then θ̄′ satisfies c implies that θ̄ also satisfies c. We let CB denote the set of (reified)

functional constraints and B denote the set of reified variables.

Without loss of generality, let (Z, Y, B) and (CB, CY) be a partition of variables X and

constraints C respectively in a normalized COP, where Z ∪ Y ∪ B = X, CB ∪ CY = C and

obj ∈ Y. Note that Z, Y, B are pairwise disjoint and CB ∩ CY = ∅. In case a variable y ∈ Y is

introduced by the flattening procedure, we set the domain for y to be the largest possible

set, and therefore, a constraint cy ∈ CY must be satisfied if the value of y ∈ Y is computed

from the assignments over variables xi1 , . . . , xik . Note that when there is no flattening and

reification, our definition of a COP degenerates to the classical definition [113].

To exploit functional constraints in normalized COPs, the following definition character-

izes a key property of full assignments.

Definition 5. Let P = (X, D, C, obj) be a normalized COP where (Z, Y, B) and (CB, CY) be a

partition of variables X and constraints C respectively. A full assignment θ̄ ∈ DX is functionally

valid if and only if

• θ̄[b] = c(θ̄[xi1 ], . . . , θ̄[xik ]) for a reified constraint (b = c(xi1 , . . . , xik)) ∈ CB, and

• θ̄[y] = h(θ̄[xi1 ], . . . , θ̄[xik ]) for a functional constraint (y = h(xi1 , . . . , xik)) ∈ CY

When θ̄ in a normalized COP is functionally valid, it corresponds to a full assignment

in the original non-flattened COP. The value for a variable y ∈ Y (respectively b ∈ B) in

a functionally valid full assignment can be computed from cy ∈ CY (respectively cb ∈ CB)
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as well as values for variables in Z. Therefore, we can focus on finding pairs of partial

assignments θ and θ′ over S ⊆ Z such that θ ≺ θ′ with respect to P.

In the remainder of this chapter, we assume that P = (X, D, C, obj) is a normalized COP and

consider only functionally valid full assignments in DX. Recall that θ ≺ θ′ requires ∀θ̄′ ∈

DX
θ′ , ∃θ̄ ∈ DX

θ such that θ̄ ≺ θ̄′ for some dominance relation over DX. It is expensive to check

whether there exists θ̄ that dominates θ̄′ for each θ̄′ in DX
θ′ . Instead, we check only whether a

specific θ̄ dominates θ̄′ by utilizing a mutation mapping for two assignments θ and θ′ over the

same scope. The mutation mapping in Definition 4 is generalized to functionally valid full

assignments in a normalized COP as follows.

Definition 6. The mutation mapping µθ′→θ for two assignments θ, θ′ ∈ DS over a scope S ⊆ Z

maps a full assignment θ̄′ ∈ DX
θ′ to another full assignment θ̄ ∈ DX

θ such that:

• θ̄[z] = θ[z] for z ∈ var(θ),

• θ̄[z] = θ̄′[z] for z ∈ Z \ var(θ),

• θ̄[y] = h(θ̄[xi1 ], . . . , θ̄[xik ]) where y ∈ Y is defined by y = h(xi1 , . . . , xik) ∈ CY,

• θ̄[b] = c(θ̄[xi1 ], . . . , θ̄[xik ]) where b ∈ B is defined by b = c(xi1 , . . . , xik) ∈ CB.

In other words, µθ′→θ “mutates” the θ′ component of θ̄′ to become θ and assigns the

computed values to variables in Y ∪ B accordingly. When it is clear from the context, we let

θ̄ = µθ′→θ(θ̄′) denote the image of θ̄′ by the mutation mapping. The following proposition

characterizes some useful properties of the mutation mapping in Definition 6.

Proposition 16. Let µθ′→θ be a mutation mapping for two assignments θ, θ′ ∈ DS over a scope

S ⊆ Z. The followings are always true for all θ̄′ ∈ DX
θ′ :

• If z ∈ S, then θ̄[z] = θ[z] and θ̄′[z] = θ′[z].

• If z ∈ Z \ S, then θ̄[z] = θ̄′[z].

The following result gives a sufficient condition governing when a partial assignment θ

dominates another θ′ with respect to P.
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Theorem 26. If a pair of assignments θ, θ′ ∈ DS satisfies:

• empty intersection: DX
θ ∩DX

θ′ = ∅,

• betterment: ∀θ̄′ ∈ DX
θ′ , θ̄[obj] ≤ θ̄′[obj], and

• implied satisfaction: ∀b ∈ B, ∀θ̄′ ∈ DX
θ′ , θ̄[b] ≥ θ̄′[b],

then θ dominates θ′ with respect to P.

The proof is essentially the same as that of Theorem 3, which is to construct a dominance

relation over DX such that all full assignments in DX
θ′ are dominated. Again, Theorems 2

and 26 imply that ¬θ′ is a dominance breaking nogood to remove all dominated solutions in

DX
θ′ . To further ensure that all generated nogoods are compatible in the sense that not all

optimal solutions of P are eliminated, a lexicographic ordering constraint θ <lex θ′ can be

added as stated in Theorem 15.

Empty intersection in Theorem 26 is trivially satisfied if θ 6= θ′. In order to show that

a partial assignment θ′ is dominated by another θ using Theorem 26, we also need to find

constraints over θ and θ′ that are sufficient conditions for the betterment and the implied

satisfaction conditions. In the next section, we will show how to derive such sufficient

conditions in an automatic manner. Note that the above definitions and results degenerate

to those in Chapter 4 when Y and CY are empty.

6.2 Automatic Sufficient Condition Derivation

Observe that the betterment and implied satisfaction conditions in Theorem 26 are both

predicates requiring an inequality to hold for all θ̄′ ∈ DX
θ′ , and we formulate the derivation

process as a rewriting system. We first present a general rewriting system (Definition 7)

which only utilizes functional constraints and the property in Definition 5 to find sufficient

conditions. While this rewriting system is generic, the derived sufficient conditions are

sometimes too restricted. We discuss more rewriting rules that exploit common functional

properties such as monotonicity (Definition 8), associativity and commutativity (Definition 9
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and 10) as well as submodularity (Definition 11) to derive more relaxed sufficient conditions,

and hence more useful nogoods can be generated for dominance breaking.

6.2.1 A General Rewriting System

To formalize the derivation of sufficient conditions, we adopt the inductive definition of

terms [4] from rewriting systems as follows:

• a variable x is a term, and

• if f is a k-ary function and t1, . . . , tk are terms, then f (t1, . . . , tk) is a term.

By abusing notations, we define var(t) = {x} when t ≡ x, and var(t) = ∪k
i=1var(ti)

when t ≡ f (t1, . . . , tk). Note that f can either be the constraint c in a reified constraint

b = c(xi1 , . . . , xik) or the function h in a functional constraint y = h(xi1 , . . . , xik). A term t is

fixed in θ if and only if var(t) ⊆ var(θ); otherwise t is free.

A substitution is a finite mapping from variables to terms which assigns to each variable x

a term t different from x. We write a substitution as β = {xi1 /t1, . . . , xik /tk} where xi1 , . . . , xik

are different variables, and t1, . . . , tk are terms such that ∀j ∈ {1, . . . , k}, xij /∈ var(tj). A

substitution β can be applied to a term t to obtain tβ by replacing every occurrence of variable

xij in var(t) by the term tj for all j ∈ {1, . . . , k}.

Let C be a binary comparison operator in {≤,≥,=}, and we say that the reverse operators

of ≤, ≥ and = are ≥, ≤ and = respectively. The betterment and the implied satisfaction

conditions in Theorem 26 are all predicates in the form of quantified inequalities, i.e.,

(∀θ̄′ ∈ DX
θ′ , tθ̄ C tθ̄′), where tθ̄ and tθ̄′ are obtained by substituting each variable in var(t)

with its values in θ̄ and θ̄′ respectively. The derivation in Example 19 recursively rewrites a

quantified inequality until the term t is fixed in θ and θ′. Formally, the rewriting system

maintains two sets of predicates (Q, F) where Q is the set of predicates that have to be

further rewritten, and F is the set of predicates involved only variables in S. We write

(Q∪ {p}, F) (Q∪Q′, F∪ F′) when a predicate p is transformed into a set Q′ of quantified

inequalities and a set F′ of conditions over θ and θ′ by a rewriting rule. Note that Q′ and F′
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are sometimes empty.

Definition 7. Given a normalized COP P = (Z ∪Y ∪ B, D, CB ∪ CY, obj) and a scope S ⊆ Z. The

general rewriting system is initialized with the pair (Q, {}), where Q = {(∀θ̄′ ∈ DX
θ′ , θ̄[obj] ≤

θ̄′[obj])} ∪ {(∀θ̄′ ∈ DX
θ′ , θ̄[b] ≥ θ̄′[b]) | b ∈ B}. When there is a predicate (∀θ̄′ ∈ DX

θ′ , tθ̄C tθ̄′) in

the system, the system applies the following rewriting rules:

• Replacement: if var(t) ∩ (Y ∪ B) 6= ∅, then

(Q ∪ {∀θ̄′ ∈ DX
θ′ , tθ̄C tθ̄′}, F) (Q ∪ {∀θ̄′ ∈ DX

θ′ , (tβ)θ̄C (tβ)θ̄′}, F),

where β = {x/ f (xi1 , . . . , xik)} and x ∈ (var(t) ∩ (Y ∪ B)) is defined by x = f (xi1 , . . . , xik).

• Binding: if var(t) ⊆ S ⊆ Z, then

(Q ∪ {∀θ̄′ ∈ DX
θ′ , tθ̄C tθ̄′}, F) (Q, F ∪ {tθC tθ′}).

• Deletion: if var(t) ⊆ (Z \ S), then

(Q ∪ {∀θ̄′ ∈ DX
θ′ , tθ̄C tθ̄′}, F) (Q, F).

• General decomposition: if var(t) ⊆ Z, var(t) ∩ S 6= ∅ and var(t) ∩ (Z \ S) 6= ∅, then

(Q ∪ {(∀θ̄′ ∈ DX
θ′ , tθ̄C tθ̄′)}, F) ≡(Q ∪ {(∀θ̄′ ∈ DX

θ′ , f (t1θ̄, . . . , tk θ̄)C f (t1θ̄′, . . . , tk θ̄′))}, F)

 (Q ∪ {(∀θ̄′ ∈ DX
θ′ , ti θ̄ = ti θ̄

′) | ∀i ∈ {1, . . . , k}}, F).

Note that rewriting rules in Definition 7 are conditional, which depends on the set var(t)

of variables. The conditions are mutually exclusive and exhaustive, which means that given a

predicate in Q, there must be one applicable rewriting rule. In particular, when we apply the

general decomposition rule, var(t) is a subset of Z and var(t) has non-empty intersection

with both S and Z \ S, and the term t must be a function term of the form f (t1, . . . , tk) which

has at least two variables in var(t). For simplicity, let Q ∧ F denote the conjunction of all

predicates in Q and F. The following theorem states an important property of the rewriting

system in Definition 7.
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Theorem 27. The rewriting system in Definition 7 preserves the invariant that Q ∧ F is always a

sufficient condition for the betterment and the implied satisfaction of P.

Proof. Since Q is initialized with predicates of the betterment and the implied satisfaction

conditions, the statement holds automatically. By induction, it suffices to show that Q ∧ F is

still a sufficient condition after applying each rewriting rule:

• Replacement: the predicate ∀θ̄′ ∈ DX
θ′ , tθ̄C tθ̄′ is equivalent to ∀θ̄′ ∈ DX

θ′ , (tβ)θ̄C (tβ)θ̄′,

because all full assignments are all functionally valid by Definition 5.

• Binding: by Proposition 16, since all variables in var(t) also belongs to S ⊆ Z, we have

θ̄[x] = θ[x] and θ̄′[x] = θ′[x] for all x ∈ var(t). The predicate (∀θ̄′ ∈ DX
θ′ , tθ̄ C tθ̄′) is

equivalent to (tθC tθ′).

• Deletion: by Proposition 16 again, when x ∈ Z and x /∈ S, we have θ̄[x] = θ̄′[x].

Therefore, the predicate tθ̄ = tθ̄′ must hold and imply that tθ̄ ≤ tθ̄′ and tθ̄ ≥ tθ̄′.

• General decomposition: the conjunction ∧k
i=1(∀θ̄′ ∈ DX

θ′ , ti θ̄ = ti θ̄
′) implies (∀θ̄′ ∈

DX
θ′ , f (t1θ̄, . . . , tk θ̄)C f (t1θ̄′, . . . , tk θ̄′)) by Definition 5, since f (t1θ̄′, . . . , tk θ̄′) is a func-

tional or reified constraint.

Therefore, the invariant is preserved by the rewriting system in Definition 7.

Note that (Q, F) (Q′, F′) by replacement, binding and deletion are equivalent trans-

formations such that (Q ∧ F) ≡ (Q′ ∧ F′), while (Q′ ∧ F′) implies (Q ∧ F) after applying

general decomposition. By Theorem 27, the execution of the rewriting system can recursively

derive the sufficient condition for a predicate in Q until either the predicate becomes a

trivial statement or it is transformed into constraints over the pair (θ, θ′) due to the mutation

mapping. What remains is to show the termination of rewriting.

Theorem 28. The rewriting system in Definition 7 always terminates, and Q must be empty when

the rewriting system terminates.
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Proof. Without loss of generality, we assume that each variable y ∈ Y appears only in at

most one constraint other than the functional constraint y = h(xi1 , . . . , xik). By definition of

a COP, Y ∪ B and CY ∪ CB are finite sets. We maintain three natural numbers:

• n1: the number of variables in Y ∪ B that have not been substituted in replacement,

• n2: the number of occurrences of function symbols in Q, and

• n3: the sum of |var(t)| for all predicates (∀θ̄′ ∈ DX
θ′ , tθ̄C tθ̄′) ∈ Q.

We claim that applying each rewriting rule reduces the triple (n1, n2, n3) in a lexicographic

sense. Each variable x ∈ Y ∪ B is only substituted when x is in the flattened constraint or

the reified constraint, replacement must decrease n1 by 1. General decomposition decreases

n2 while keeping n1 unchanged. Further, binding and deletion remove one predicate

(∀θ̄′ ∈ DX
θ′ , tθ̄ C tθ̄′) from Q and therefore decrease n3 by var(t). The termination follows

directly from the fact that there is no infinite descending sequence of triples of natural

numbers. Rewriting rules in Definition 7 are exhaustive, and therefore Q must be empty

when no rules are applicable and the rewriting system terminates.

The following corollary is a direct consequence of Theorems 27 and 28.

Corollary 5. The rewriting system in Definition 7 always terminates, and the conjunction of

predicates in F is a sufficient condition for the betterment and the implied satisfaction conditions of P

upon termination of the system.

In addition to the soundness property stated in Corollary 5, we can also show that the

rewriting system is confluent, i.e. the ordering in which the rewriting rules are applied does

not affect the eventual result.

Theorem 29. The rewriting system in Definition 7 is confluent.

Proof. It suffices to show that the rewriting system has the diamond property [4], i.e., if

(Q, F) (Q′, F′) and (Q, F) (Q′′, F′′) by rewriting rules in Definition 7, then there exists

(Q′′′, F′′′) such that (Q′, F′) (Q′′′, F′′′) and (Q′′, F′′) (Q′′′, F′′′). Note that conditions of
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the four rules in the rewriting system are mutually exclusive and exhaustive. Therefore, if

(Q′, F′) 6= (Q′′, F′′), they must be the results of rewriting different predicates p and p′ in Q.

Therefore, (Q′′′, F′′′) can be obtained by rewriting p′ ∈ Q′ and rewriting p ∈ Q′′.

The rewriting system in Definition 7 considers that the function f is general without

any properties when applying general decomposition, but this may result in too restrictive

sufficient conditions. For example, if we apply the rewriting system to the COP in (6.1),

the resulting sufficient conditions for the betterment and the implied satisfaction will be

θ[z1] = θ′[z1] and θ[z2] = θ′[z2], which is in conflict with the empty intersection condition in

Theorem 26. No solution can be found by solving such a generation CSP and no nogoods

can be generated. Therefore, we want more relaxed sufficient conditions as far as possible.

6.2.2 Decomposition Rules Using Function Properties

In this section, we give a rewriting system that returns more relaxed sufficient conditions

for the betterment and implied satisfaction conditions. Recall that all rewriting rules in

Definition 7 are equivalent transformations, except for the general decomposition rule. The

idea is to apply different decomposition rules based on properties of functions in functional

and reified constraints. We say that a predicate p1 is weaker than another predicate p2 if and

only if p2 ⇒ p1, and p2 is stronger than p1. The weaker the sufficient conditions in generation

CSPs, the more pairs of assignments will satisfy all the conditions and the more nogoods

can be found by Theorem 26.

Algorithm 3 gives the rewriting system that exploits functions with special properties,

which takes a normalized COP P and a scope S as inputs and returns a set F of predicates for

the construction of generation CSPs. Similar to the general rewriting system in Definition 7,

Algorithm 3 applies replacement (Line 6), binding (Line 8), deletion (Line 10) and general

decomposition (Line 16). The difference is that a different decomposition rule is applied to

a function f when it is in a pre-defined library L of functions with special properties. It is

straightforward to see that the new rewriting system is still confluent.

Theorem 30. The rewriting system in Algorithm 3 is confluent.
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Algorithm 3 A rewriting system for deriving sufficient conditions
Input: a normalized COP P = (Z ∪Y ∪ B, D, CB ∪ CY, obj), a scope S ⊆ Z
Output: a set F of predicates over θ, θ′ ∈ DS

1: Q← {(∀θ̄′ ∈ DX
θ′ , θ̄[obj] ≤ θ̄′[obj])} ∪ {(∀θ̄′ ∈ DX

θ′ , θ̄[b] ≥ θ̄′[b]) | b ∈ B}, F ← ∅
2: while Q 6= ∅ do
3: Remove a predicate p ≡ (∀θ̄′ ∈ DX

θ′ , tθ̄C tθ̄′) from Q
4: if var(t) ∩ (Y ∪ B) 6= ∅ then
5: Let x ∈ var(t) ∩ (Y ∪ B) be a variable defined by x = f (xi1 , . . . , xik)
6: Q← Q ∪ {(∀θ̄′ ∈ DX

θ′ , (tβ)θ̄C (tβ)θ̄′)} where β ≡ {x/ f (xi1 , . . . , xik)}
7: else if var(t) ⊆ S ⊆ Z then
8: F ← F ∪ {(tθC tθ′)}
9: else if var(t) ⊆ (Z \ S) then

10: Continue
11: else
12: Let p be (∀θ̄′ ∈ DX

θ′ , f (t1θ̄, . . . , tk θ̄)C f (t1θ̄′, . . . , tk θ̄′))
13: if f is in a pre-defined library L of functions then
14: (Q, F)← (Q ∪Q′, F ∪ F′) where Q′ and F′ are from the decomposition of p
15: else
16: Q← Q ∪ {(∀θ̄′ ∈ DX

θ′ , ti θ̄ = ti θ̄
′) | ∀i = 1, . . . , k}

17: end if
18: end if
19: end while

Proof. The new system still possesses the diamond property as the stated in Theorem 29.

The most important property of Algorithm 3 is the soundness as that in Corollary 5.

If there are no restriction on the decomposition rules for functions in the library L, Algo-

rithm 3 may not terminate or return a set of predicates that are sufficient conditions for the

betterment and the implied satisfaction condition. Therefore, we need to characterize the

validity of desired decomposition rules.

A decomposition rule rewrites a predicate p into a set Q′ of quantified inequalities and

a set F′ of conditions over θ and θ′, and we say that it is sound if Q′ ∧ F′ is a sufficient

condition of p. We also say that it is diminishing if the number of function symbols in Q′

must be decrease while there are no new variables introduced in predicates of Q′ after

rewriting.

Theorem 31. If all decomposition rules for functions in the library L are sound and diminishing,

then the rewriting system in Algorithm 3 always terminates, and the conjunction of predicates in F
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is a sufficient condition for the betterment and implied satisfaction conditions of P upon termination.

Proof. Since all decomposition rules for functions in L are sound and diminishing, the proof

for Theorems 27 and 28 are still valid, which implies the soundness of Algorithm 3.

Theorem 31 implies that the rewriting system in Algorithm 3 is extensible with sound

and diminishing decomposition rules. In the following, we give several decomposition

rules catering for special function properties. In particular, we highlight the aggregation

functions which usually possess useful properties such as monotonicity, associativity, and

commutativity for deriving weaker sufficient conditions. The cut function in a graph is

also given as an example to demonstrate that the rewriting system can cooperate with

an ad-hoc decomposition rule for a specific functional constraint. Note that when several

decomposition rules are applicable to a predicate, the principle is to apply the one that

returns the weakest possible sufficient conditions.

Decomposition for Aggregation Functions

Aggregation functions [57], such as summation, maximum, and minimum, combine multiple

values into a single representative value, and they are common in modeling COPs. We

describe several rewriting rules to derive weaker sufficient conditions by exploiting the

properties of aggregation functions.

The first property of interest is monotonicity. A function f : Rk 7→ R is monotonically

increasing if

(∀i, ai ≤ bi)⇒ f (a1, . . . , ak) ≤ f (b1, . . . , bk)

and is monotonically decreasing if

(∀i, ai ≥ bi)⇒ f (a1, . . . , ak) ≥ f (b1, . . . , bk)

where ai, bi ∈ R. When the function f is monotonically increasing or monotonically

decreasing, we have the following rewriting rules.
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Definition 8. Suppose p ≡ (∀θ̄′ ∈ DX
θ′ , f (t1θ̄, . . . , tk θ̄)C f (t1θ̄′, . . . , tk θ̄′)) ∈ Q is a predicate in

the rewriting system.

• Increasing decomposition: if f is monotonically increasing, then

(Q ∪ {p}, F) (Q ∪ {(∀θ̄′ ∈ DX
θ′ , ti θ̄C ti θ̄

′) | ∀i = 1, . . . , k}, F)

• Decreasing decomposition: if f is monotonically decreasing, then

(Q ∪ {p}, F) (Q ∪ {(∀θ̄′ ∈ DX
θ′ , ti θ̄B ti θ̄

′) | ∀i = 1, . . . , k}, F)

We can show that both the increasing decomposition and the decreasing decomposition

rules have the desired properties in Theorem 31.

Theorem 32. The increasing decomposition and the decreasing decomposition rules in Definition 8

are sound and diminishing.

Proof. The rules are sound by the definitions of monotonically increasing and monotonically

decreasing functions and the fact that all full assignments are functionally valid. The

function symbol f is removed, and therefore the rules are also diminishing.

What is more, applying the increasing decomposition and the decreasing decomposition

rules can obtain weaker sufficient conditions.

Theorem 33. Suppose p ≡ (∀θ̄′ ∈ DX
θ′ , f (t1θ̄, . . . , tk θ̄)C f (t1θ̄′, . . . , tk θ̄′)) is a predicate in the

rewriting system. If (Q ∪ {p}, F) (Q ∪Q′, F) by the increasing decomposition (respectively the

decreasing decomposition) and (Q ∪ {p}, F) (Q ∪Q′′, F) by the general decomposition, then the

conjunction of predicates in Q′ is weaker than that in Q′′.

Proof. The result follows the fact that all full assignments are functionally valid, and each

predicate (∀θ̄′ ∈ DX
θ′ , ti θ̄ = ti θ̄

′) is always a sufficient condition for both (∀θ̄′ ∈ DX
θ′ , ti θ̄C ti θ̄

′)

and (∀θ̄′ ∈ DX
θ′ , ti θ̄B ti θ̄

′).

By Theorem 33, the general decomposition should always be replaced by increasing

94



decomposition or decreasing decomposition whenever f is monotonically increasing or

monotonically decreasing.

Other common and useful properties of aggregation functions are associativity and

commutativity. We can show that decomposition rules in Definitions 7 and 8 can obtain even

weaker sufficient conditions by using these two properties. Note that an aggregation function

f can take an arbitrary non-zero number of arguments. To facilitate the presentation, we

use a special notation to denote it. Let t = 〈t1, . . . , tk〉, t1 = 〈t1, . . . , tj〉 and t2 = 〈tj+1, . . . , tk〉

be vectors of terms, where 1 ≤ j ≤ k. Using these notations, the followings denote the

same function call: f (t1, . . . , tk), f (t) and f (t1, t2). Aggregation functions usually possess

the following two properties:

• Commutativity: f (t1, . . . , tk) = f (tπ(1), . . . , tπ(k)) where π is a permutation over {1, . . . , k}.

• Associativity: f (t) = t and f (t1, t2) = f ( f (t1), t2).

A permutation over a set is a bijection from the set to itself. By commutativity, we can

always find a permutation for arguments of f (t1, . . . , tk) so that all fixed terms are clustered.

Proposition 17. Let f be a commutative function and θ ∈ DS be an assignment where S ⊆ Z.

If there are j ≥ 1 fixed terms among t1, . . . , tk, then we can always find a permutation π over

{1, . . . , k} such that

∀θ̄ ∈ DX
θ , f (t1θ̄, . . . , tk θ̄) = f (tπ(1)θ̄, . . . , tπ(j)θ̄, tπ(j+1)θ̄, . . . , tπ(k)θ̄),

where tπ(1), . . . , tπ(j) are all fixed in θ, while tπ(j+1), . . . , tπ(k) are free terms.

The proof directly follows the definition of commutativity. The following gives a

rewriting rule in replacement of the general decomposition rule in Definition 7 for a

commutative and associative function.

Definition 9. Suppose p ≡ (∀θ̄′ ∈ DX
θ′ , f (t1θ̄, . . . , tk θ̄)C f (t1θ̄′, . . . , tk θ̄′)) is a predicate in the

rewriting system such that there are j ≥ 1 fixed terms among t1, . . . , tk. Let π be a permutation over

{1, . . . , k} such that t1 = 〈tπ(1), . . . , tπ(j)〉 and t2 = 〈tπ(j+1), . . . , tπ(k)〉 consists of all fixed terms

and free terms respectively.
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• General Decomposition with Aggregation: if f is commutative and associative, then

(Q ∪ {p}, F)

 (Q ∪ {(∀θ̄′ ∈ DX
θ′ , tπ(i)θ̄ = tπ(i)θ̄

′) | ∀i = j + 1, . . . , k}, F ∪ { f (t1)θ = f (t1)θ
′}).

We can show that the new rule can be added to the rewriting system in Algorithm 3.

Theorem 34. The general decomposition with aggregation rule is sound and diminishing.

Proof. It is straightforward to see that the rule is diminishing, while the soundness is proved

as follows:

(∀θ̄′ ∈ DX
θ′ , f (t1θ̄, . . . , tk θ̄)C f (t1θ̄′, . . . , tk θ̄′))

⇔(∀θ̄′ ∈ DX
θ′ , f (t1θ̄, t2θ̄)C f (t1θ̄′, t2θ̄′))

⇔(∀θ̄′ ∈ DX
θ′ , f ( f (t1)θ̄, t2θ̄)C f ( f (t1)θ̄

′, t2θ̄′))

⇐(
k∧

i=j+1

(∀θ̄′ ∈ DX
θ′ , tπ(i)θ̄ = tπ(i)θ̄)) ∧ (∀θ̄′ ∈ DX

θ′ , f (t1)θ̄ = f (t1)θ̄
′)

⇔(
k∧

i=j+1

(∀θ̄′ ∈ DX
θ′ , tπ(i)θ̄ = tπ(i)θ̄)) ∧ ( f (t1)θ = f (t1)θ

′)

The second and the third steps are due to the commutativity and the associativity of f

respectively, while the fourth step holds because all full assignments are functionally valid.

By Proposition 16, the last step holds because θ̄[x] = θ[x] and θ̄′[x] = θ′[x] for all θ̄′ ∈ DX
θ′

and θ̄ = µθ′→θ(θ̄′).

The advantage of the rule in Definition 9 is that the derived sufficient conditions are

weaker compared with those from the general decomposition rule in Definition 7.

Theorem 35. Suppose p ≡ (∀θ̄′ ∈ DX
θ′ , f (t1θ̄, . . . , tk θ̄)C f (t1θ̄′, . . . , tk θ̄′)) is a predicate in the

rewriting system. If (Q∪{p}, F) (Q∪Q′, F∪ F′) by the general decomposition with aggregation

and (Q ∪ {p}, F) (Q ∪Q′′, F) by the general decomposition, then the conjunction of predicates

in Q′ ∧ F′ is weaker than that for Q′′.
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Proof. After applying the general decomposition rule, the conjunction of predicates in Q′′ is

k∧
i=1

(∀θ̄′ ∈ DX
θ′ , ti θ̄ = ti θ̄

′)

⇔(
j∧

i=1

(∀θ̄′ ∈ DX
θ′ , tπ(i)θ̄ = tπ(i)θ̄)) ∧ (

k∧
i=j+1

(∀θ̄′ ∈ DX
θ′ , tπ(i)θ̄ = tπ(i)θ̄))

⇒(
j∧

i=1

(∀θ̄′ ∈ DX
θ′ , tπ(i)θ̄ = tπ(i)θ̄)) ∧ (∀θ̄′ ∈ DX

θ′ , f (t1)θ̄ = f (t1)θ̄
′)

⇔(
j∧

i=1

(∀θ̄′ ∈ DX
θ′ , tπ(i)θ̄ = tπ(i)θ̄)) ∧ ( f (t1)θ = f (t1)θ

′)

where π is as defined in Definition 9. The third step holds because all full assignments are

functionally valid, and the last step is by Proposition 16.

We can also define similar decomposition rules for a monotonic, commutative and

associative function.

Definition 10. Suppose p ≡ (∀θ̄′ ∈ DX
θ′ , f (t1θ̄, . . . , tk θ̄)C f (t1θ̄′, . . . , tk θ̄′)) is a predicate in the

rewriting system such that there are j ≥ 1 fixed terms among t1, . . . , tk. Let π be a permutation over

{1, . . . , k} such that t1 = 〈tπ(1), . . . , tπ(j)〉 and t2 = 〈tπ(j+1), . . . , tπ(k)〉 consists of all fixed terms

and free terms respectively.

• Increasing Decomposition with Aggregation: if f is monotonically increasing, commutative

and associative, then (Q ∪ {p}, F) is rewritten into

(Q ∪ {(∀θ̄′ ∈ DX
θ′ , tπ(i)θ̄C tπ(i)θ̄

′) | ∀ = j + 1, . . . , k}, F ∪ { f (t1)θC f (t1)θ
′}).

• Decreasing Decomposition with Aggregation: if f is monotonically increasing, commutative

and associative, then (Q ∪ {p}, F) is rewritten into

(Q ∪ {(∀θ̄′ ∈ DX
θ′ , tπ(i)θ̄B tπ(i)θ̄

′) | ∀i = j + 1, . . . , k}, F ∪ { f (t1)θB f (t1)θ
′}).

The rules are diminishing and sound, and can derive weaker sufficient conditions than

those in Definition 8. The proofs are similar to those for Theorems 34 and 35.

We illustrate the advantages of aggregation using the following example.
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Example 20. Suppose we want to find sufficient conditions for θ and θ′ where var(θ) = var(θ′) =

{z1, z3}. Let (Q ∪ {p}, F) be the pair of the rewriting system where

p ≡ (∀θ̄′ ∈ DX
θ′ , min(θ̄[z1], θ̄[z2], θ̄[z3]) ≤ min(θ̄′[z1], θ̄′[z2], θ̄′[z3])). (6.9)

If we apply increasing decomposition directly to (6.9), we get

(Q ∪ {(∀θ̄′ ∈ DX
θ′ , θ̄[zi] ≤ θ̄′[zi]) | i = 1, 2, 3}, F) (6.10)

Since the min function is commutative and associative, we can obtain

(Q ∪ {∀θ̄′ ∈ DX
θ′ , min(min(θ̄[z1], θ̄[z3]), θ̄[z2]) ≤ min(min(θ̄′[z1], θ̄′[z3]), θ̄′[z2])}, F) (6.11)

by applying aggregation to (6.9). Using the increasing decomposition rule, we get

(Q ∪ {(∀θ̄′ ∈ DX
θ′ , min(θ̄[z1], θ̄[z3]) ≤ min(θ̄′[z1], θ̄′[z3])), (∀θ̄′ ∈ DX

θ′ , θ̄[z2] ≤ θ̄′[z2])}, F)

(6.12)

Note that after applying binding and deletion in Definition 7 to (6.10) and (6.12) respectively,

we obtain θ[z1] ≤ θ′[z1] ∧ θ[z3] ≤ θ′[z3] and min(θ[z1], θ[z3]) ≤ min(θ′[z1], θ′[z3]) as sufficient

conditions for (6.9), and the former condition is stronger than the latter one.

Table 6.1 summarizes common constraints in a normalized COP and their properties that

can be used for deriving weaker sufficient conditions. For each type of standard constraint,

we give the functionally defined variable, arguments, its monotonicity properties (“Mono."),

and whether the function commutative and associative (“Com. & Asso."). To facilitate the

generation of nogoods, we can compile a global constraint into a conjunction of standard

constraints in Table 6.1 when constructing generation CSPs.

Example 21. The alldifferent(z1, . . . , zk) constraint [115] is a global constraint that enforces a set

of variables taking distinct values. To apply the rewriting system, the constraint is first reified into

b0 ↔ alldifferent(z1, . . . , zk). Let D̃ ⊆ ⋃k
j=1 D(zj) be the set of values that appear in the domains

of at least two variables in {z1, . . . , zk} and d = |D̃|. We can compile the constraint into a set of

canonical constraints:
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Constraint Defines Arguments Mono. Com. & Asso.
y = ∑n

i=1 xi − d0 y x1, . . . , xn Increasing Yes
y = max(x1, . . . , xn) y x1, . . . , xn Increasing Yes
y = min(x1, . . . , xn) y x1, . . . , xn Increasing Yes

y = ∏n
i=1 xi where D(xi) ⊆ Z+ y x1, . . . , xn Increasing Yes

y = element([d1, . . . , dn], x) y x No No
y = abs(x) y x No No

y = bool2int(b) y b Increasing No
b0 ↔ (x = y) b0 x, y No No
b0 ↔ (x 6= y) b0 x, y No No
b0 ↔ (x ≤ d) b0 x Decreasing No

y = w · x where w ≥ 0 y x Increasing No
y = w · x where w < 0 y x Decreasing No
b0 ↔ and(b1, . . . , bn) b0 b1, . . . , bn Increasing Yes
b0 ↔ or(b1, . . . , bn) b0 b1, . . . , bn Increasing Yes

b0 ↔ xor(b1, . . . , bn) b0 b1, . . . , bn No Yes
b0 ↔ ¬b1 b0 b1 Decreasing Yes

Table 6.1: Common constraints for detecting dominance relations

•
∧

vi∈D̃
∧k

j=1(bjvi ↔ (zj = vi) ∧ yjvi = bool2int(bjvi)),

•
∧

vi∈D̃(y0vi = sum(y1vi , . . . , ykvi) ∧ bvi ↔ (y0vi ≤ 1)), and

• b0 ↔ and(bv1 , . . . , bvd),

where y0vi , yjvi , bjvi and bv are introduced variables defined by canonical functional constraints that

enjoy the properties of monotonicity, commutativity and associativity. Therefore, the decomposition

rules in Definitions 8 and 9 can be applied to derive sufficient conditions for the implied satisfaction

condition of the alldifferent constraint.

The idea can be applied similarly to support other global constraints like the global

cardinality constraint [116, 104] and the bin packing constraint [123]. Note that global con-

straints are treated as a conjunction of canonical constraints only in synthesizing generation

CSPs, and are untouched in problem solving.
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Ad-hoc Decomposition Rules

While aggregation functions are useful in deriving sufficient conditions, decomposition

rules in the last section by no means exhaust all possible properties that are helpful in the

derivation. In this section, we give an example of the cut function to demonstrate how the

rewriting system can be extended with ad-hoc decomposition rules.

Let G = (U, E) be a graph and (V, U \V) be a partition of V. The cut of such a partition

in graph G is ∑u∈V,v∈(U\V) wuv where wuv ∈ R is the weight of an edge (u, v) ∈ E. Following

Section 4.2.2, a cut can be modelled in a binary COP, where there is one variable xu with

D(xu) = {0, 1} for each vertex u ∈ U. A partial/full assignment θ can represent a partition

(V, U \V) where V = {v | (xv = 1) ∈ θ}, and the cut value f (θ) of the partition is equal to

∑u∈V,v∈(U\V) wuv. We have the following decomposition rule for a cut function.

Definition 11. Suppose p ≡ (∀θ̄′ ∈ DX
θ′ , f (t1θ̄, . . . , tk θ̄) ≥ f (t1θ̄′, . . . , tk θ̄′)) is a predicate in the

rewriting system such that there are j ≥ 1 fixed terms among t1, . . . , tk. Let π be a permutation over

{1, k} such that t1 = 〈tπ(1), . . . , tπ(j)〉 and t2 = 〈tπ(j+1), . . . , tπ(k)〉 consists of all fixed terms and

free terms respectively.

• Cut Decomposition: if f is a cut function, then (Q ∪ {p}, F) is rewritten into

(Q ∪ {(∀θ̄′ ∈ DX
θ′ , ti θ̄ = ti θ̄) | ti ∈ t2}, F ∪ {tiθ ≤ tiθ

′ | ti ∈ t1} ∪ { f (θ) ≥ f (θ′)}),

where t1 = 〈tπ(1), . . . , tπ(j)〉 and t2 = 〈tπ(j+1), . . . , tπ(k)〉 is a partition of {t1, . . . , tk} such

that t1 consists of all fixed terms, π is a permutation of {1, . . . , k}, and 1 ≤ j ≤ k.

Similar to Theorem 7, it can be show that the conjunction of the derived predicates

by the decomposition rule is a sufficient condition of the rewritten predicate due to the

submodular property of the cut function.

Proposition 18. The cut decomposition rule is sound and diminishing.

Also, it is straightforward to see that the derived predicates by the cut decomposition

are weaker than the general decomposition in Definition 7.
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Proposition 19. Let p ≡ (∀θ̄′ ∈ DX
θ′ , f (t1θ̄, . . . , tk θ̄)C f (t1θ̄′, . . . , tk θ̄′)) ∈ Q be a predicate where

C is an operator in {≤,≥,=}. If (Q ∪ {p}, F) (Q ∪Q′, F) by the general decomposition and

(Q ∪ {p}, F) (Q ∪Q′, F ∪ F′) by the cut decomposition, then Q′′ ∧ F′′ is weaker than that of Q′.

The proof of Proposition 19 is similar to that of Theorem 33.

Note that a submodular function can also be monotone. For example, a linear constraint

y = ∑xi∈S θ̄[xi] is both submodular and monotonically increasing, and we can decompose

the functional constraint by either the increasing decomposition with aggregation in Defini-

tion 10 or the cut decomposition in Definition 11. Recall that our principle is to obtain the

weakest possible sufficient conditions, and therefore we would apply the former rule for a

linear constraint.

6.3 Experimental Evaluation

In this section, we give experimental results to show the utility of our proposal. All

experiments are run on Xeon E5-2630 2.60GHz processors. We use MiniZinc [100] as the

high-level modeling language and implement our nogood generation method by modifying1

the publicly available MiniZinc compiler with version 2.6.2. In a compiled model, we treat

constraints with the annotation “defines_var” as functional constraints, while others

are non-functional constraints that should be reified. The generated nogoods for each

problem are output as text and then appended to the MiniZinc model of the corresponding

problem. The augmented models are submitted to MiniZinc for solving using the Chuffed

solver [103] with version 0.10.4. Note that our method aims to analyze a user-defined model,

not necessarily that of the best model, and we specify the search strategies for all problems

to demonstrate the effect of the additional dominance breaking nogoods in search space

pruning. We use six benchmark problems, 20 random instances for each problem size. The

models for the following three problems are from public benchmark suites:

1We modify the embedded Geas solver and use the free search option for solving the generation CSPs. Our
implementations are available at https://github.com/AllenZzw/auto-dom.
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• Talent-n. The Talent Scheduling Problem [19] is problem 039 in CSPLib [54]. Each

actor appears in several scenes and is paid a fixed cost per day if they are present.

They need to be present on location from the first scene they are in till the last scene

they are in. We need to schedule n scenes to minimize the total cost for a set of actors.

The dominance breaking constraints for manual are by Chu and Stuckey [23].

• Warehouse-n. The Warehouse Location Problem [127] is problem 034 in CSPLib [54].

We need to choose a subset of possible warehouses in different locations to supply a

set of n existing customers such that the sum of building costs for warehouses and

supply costs for customers is minimized.

• Team-n-m. The Team Assignment Problem appears in MiniZinc Challenge 2018 [124].

The problem consists of n×m players, where players have different ratings and need

to be assigned to n teams. There are requests regarding which pair of players want

to be in the same team. The objective is to satisfy as many requests as possible while

balancing the total rating among all teams.

In addition to publicly available models, we also model three more problems in MiniZinc:

• MaxCover-n. The Budgeted Maximum Coverage Problem [69] is a variant of the set

cover problem. There is a ground set U and a collection T consisting of n subsets of

U, where each subset is associated with a cost ci. The goal is to find a subset of T

such that the union covers the maximum number of elements subject to the constraint

that the total cost does not exceed a given budget. The search strategy is to select the

unfixed subset in T with the smallest cost first.

• PartialCover-n. The Partial Set Cover Problem [68] is another variant of the set cover

problem. Given a ground set U and a collection T consisting of n subsets of U, the

goal is to find a subset of T with the minimum total cost, whose union covers at least

K elements in U. The search strategy is also to select the subset with the smallest cost

first.
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• Sensor-n. The Sensor Placement Problem [73] is a variant of the facility location

problem [26], where we need to select a fixed cardinality subset of n locations to place

sensors in order to provide service for customers. If we place a sensor at location i,

then it provides service to a subset of reachable customers, and each customer will

choose the facility with the highest service value from the opened sensors, and the

goal is to maximize the total service value. The search strategy is to select the unfixed

location with the highest service value to the set of customers that are reachable by

the sensor placed at the location.

Note that the original method in Chapter 4 can handle none of the benchmarks effectively

because of nested function calls in either the objective or constraints. For all benchmarks,

we attempt to generate all dominance breaking nogoods of length up to L (L-dom), and

compare our method to the basic problem model (basic) and the model with manual

dominance breaking constraints (manual) whenever they are available. The timeout for

the whole solving process (nogood generation + problem solving) is set to 7200 seconds,

while we reserve at most 3600 seconds for nogood generation and use the remaining time for

problem solving in L-dom. If nogood generation times out, we augment the problem model

with all nogoods generated before the timeout.

In Table 6.2, we report the geometric mean of the problem solving time (Solving) and

the total time (Total) for all benchmarks, where “N/A” in the manual column indicates that

there are no known dominance breaking constraints for the problem in the literature. We

first compare the problem solving time of L-dom against basic to evaluate the usefulness of

the generated nogoods, and we observe that the generated dominance breaking nogoods

can significantly reduce the solving time in all benchmarks. As the maximum nogood length

L increases and more generated nogoods are added to the problem model, the solving

time is usually shorter except for Talent-n. We note that the solving time of 4-dom is larger

than that of 3-dom for Talent-n due to the overhead caused by a large amount of generated

nogoods of length 4.

We also compare the total time (generation time + solving time) of L-dom against basic
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basic manual 2-dom 3-dom 4-dom
Problem Total Total Solving Total Solving Total Solving Total
Talent-16 187.79 5929.75 189.95 192.16 130.78 148.91 256.46 1988.75
Talent-18 1575.51 7200.00 1565.89 1568.29 672.26 713.55 1864.68 5760.68
Talent-20 5013.10 7200.00 4936.18 4960.54 2856.33 2960.09 3268.72 7006.10
Warehouse-35 7200.00 N/A 10.29 52.11 8.53 2442.71 8.51 3619.87
Warehouse-40 7200.00 N/A 46.08 111.43 32.93 3652.15 32.55 3657.33
Warehouse-45 7200.00 N/A 69.41 140.92 45.45 3690.84 46.19 3694.63
Team-6-5 24.48 N/A 10.57 12.49 9.70 32.00 8.88 427.73
Team-7-5 276.84 N/A 138.88 146.15 130.71 225.19 150.83 1745.96
Team-8-5 1983.53 N/A 819.58 829.05 767.52 1024.43 724.63 5191.70
MaxCover-45 75.91 N/A 53.47 53.79 5.07 9.96 0.27 83.93
MaxCover-50 615.04 N/A 464.81 465.53 26.31 34.92 1.12 134.99
MaxCover-55 3576.98 N/A 2859.60 2860.27 78.37 91.53 2.54 199.11
PartialCover-45 2383.20 N/A 366.17 368.03 59.44 70.64 2.49 90.25
PartialCover-50 3769.26 N/A 780.80 781.73 74.86 88.45 6.86 153.90
PartialCover-55 4640.06 N/A 1769.31 1770.42 211.83 234.41 15.23 240.68
Sensor-50 156.84 N/A 138.65 139.44 94.05 108.99 57.34 297.18
Sensor-60 595.46 N/A 404.27 405.52 269.61 296.56 172.43 709.37
Sensor-70 1615.18 N/A 1144.17 1145.83 810.01 854.61 651.72 1724.70

Table 6.2: Comparison of the solving time and the total time for various benchmarks

and manual. For each set of benchmarks, we highlight the fastest time in bold. We observe

that the nogood generation time of L-dom increases with the maximum nogood length L of

the generated nogoods, and there is a trade-off between search space pruning and generation

time. The optimal nogood length depends on the problem structure. For Warehouse-n and

Team-n-m, 2-dom is the best and reduces up to 99.27% and 58.20% less time than basic

respectively. In Talent-n, MaxCover-n, PartialCover-n and Sensor-n, 3-dom usually comes on

top, and the percentage decrease in runtime is up to 54.71%, 97.44%, 96.95% and 80.48%

respectively compared with basic. The performance gain of L-dom in problem solving

usually outweighs the generation time in a range of problems when the maximum length L

of nogoods is set appropriately.

We note that the solving time of manual is even larger than that of basic in Talent-n.

Expressing manual dominance breaking for Talent-n in the MiniZinc model requires addi-

tional variables and introduces overheads for propagation. Chu and Stuckey [23] implement

the manual dominance breaking constraints in Chuffed, which requires sophisticated and
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bespoke techniques to reduce the overhead. The generated nogoods by our method only

involve variables in the original model, and they can be posted in the high-level modeling

language without modifying the backend solver.

Appendix A.3 gives more experimental results on evaluating the effects of dominance

breaking nogoods using different search configurations.

6.4 Discovering Dominance Relations

Our method, which is based on that of Chapters 4, attempts to generate all dominance

breaking nogoods before problem solving, and sometimes the number of nogoods is so

large that generating all nogoods will cost too much time for each problem instance. We

observe that nogoods are the most basic units of constraints. Every high-level constraint

can be decomposed into a group of nogoods, and vice versa. By examining the patterns of

the generated nogoods, we could discover the embedded high-level dominance breaking

constraints. We give two case studies in this section.

The first case study is the Still Mill Slab Design Problem [64], which is problem 039 in

CSPLib [54]. The problem is to assign colored production orders with different sizes to slabs

where each slab has a finite number of possible sizes. The total size of orders assigned to a

slab cannot exceed the chosen slab size, and each slab cannot contain orders with more than

2 colors. The loss of each slab is the difference between the chosen slab size and the total

size of orders assigned to the slab, and the objective is to minimize the total loss of all slabs.

Previous works study different classes of symmetries, one of which is order symme-

tries [42], that is, two orders with identical size and color are equivalent. We apply our

method to generate nogood of length 2 for the model from MiniZinc Challenge 2017 [124],

which introduces one variable xi to specify the slab that orders i is assigned to. The genera-

tion always times out within 3600 seconds, and the overhead always outweighs the benefit.

Although a single nogood means relatively little, a bunch of them together can derive a

meaningful constraint collectively. We investigate the semantics of nogoods and discover a

new class of symmetries. By generating the nogoods of length 2, we observe that we can
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Figure 6.1: Comparison of the solving time with/without new symmetry breaking constraints in steel mill
slab design problem

group all nogoods involving the same set of variables and find that for some pairs of orders

i and j, the nogoods are xi 6= vi ∨ xj 6= vj for all vi ∈ D(xi), vj ∈ D(xj) s.t. vi > vj, which

can be combined into one single inequality constraint xi ≤ xj. These symmetry breaking

constraints force the order i to be on a slab whose index is less than or equal to the slab

index of order j when orders i and j are equivalent. The surprise is that two orders are

symmetric not only when they have the same size and the same color, but also when they

have the same size and their colors are unique. To the best of our knowledge, previous studies

never reveal and exploit such a symmetry relationship.

We take a constraint model of the steel mill slab design problem from a public benchmark

suite2 and augment it with constraints to break the newly discovered symmetry relationship.

Figure 6.1 shows the solving time for all 380 instances from the steel mill slab library3,

and the dots below the diagonal line represent the instances benefiting from the newly

discovered constraints. We observe that the solving time is reduced in the majority of

cases, especially more so when the solving time of the original model requires more than

2https://github.com/MiniZinc/minizinc-benchmarks/tree/master/steelmillslab

3http://becool.info.ucl.ac.be/steelmillslab
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basic manual 2-dom 3-dom 4-dom
Problem Total Total Solving Total Solving Total Solving Total

Curriculum-60 61.82 23.76 27.80 77.44 21.88 3667.22 20.45 3673.27
Curriculum-65 291.35 62.14 71.26 160.95 62.57 3779.78 66.41 3785.61
Curriculum-70 518.31 133.54 148.84 242.62 126.19 3836.27 126.23 3837.26

Table 6.3: Comparison of the solving time for the balance academic curriculum problem

10 seconds. The hard instances are represented by dots in the shaded region in Figure 6.1.

Note that both axes are in log scale, and the speed-up of new constraints is up to two orders

of magnitude. Several outliers require substantially more solving time after adding the new

symmetry breaking constraints. This is due to the conflict between the search heuristic and

the static symmetry breaking constraints [47]. We believe the conflicts can be mitigated by

using dynamic symmetry breaking methods such as SBDS [53] or SBDD [30].

The other case study is the Balanced Academic Curriculum Problem [18], which is

problem 030 in CSPLib [54]. There are n courses each associated with several credits

representing the effort required to complete the course, and courses need to be assigned

to academic periods subject to the course prerequisite constraints. The workload of each

period is the sum of all credits of courses that are assigned to the period. The objective is to

minimize the maximum academic load for all periods to balance the loads among academic

periods.

We perform experiments using the same experimental setting as that in Section 6.3 and

report the results for problems with different course numbers in Table 6.3. The dominance

breaking constraints for manual are by Monette, Jean-Noël et al. [97]. In general, the

problem-solving time of our method is smaller than that of basic but larger than that of

manual. The overhead of L-dom mainly comes from the generation of dominance breaking

nogoods before solving the COP. In addition, the dominance breaking constraints in manual

are in the form of inequalities, which can be handled more efficiently than nogoods added

by L-dom in a propagation-based constraint solver. Nevertheless, by analyzing the nogoods

of a small instance, we find that the generated nogoods of length 2 can also be combined

into inequality constraints similar to the case of the steel mill slab design problem. The
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inequality constraints we consider are the same as those proposed by Monette, Jean-Noël

et al. [97], which shows that our method can also reveal dominance breaking constraints

written by experts in the literature.

6.5 Concluding Remarks

In this chapter, we generalize the framework of automatic dominance breaking to constraint

optimization problems with nested functions, where the derivation of sufficient conditions

in a generation CSP is formulated formally as a term rewriting system. We identify that

common function properties such as monotonicity, commutativity and associativity are

useful in deriving weaker sufficient conditions such that more dominance breaking nogoods

can be generated. We implement a tool for automatic dominance breaking using the

MiniZinc compiler, and the experimentation shows that the tool can discover dominance

breaking nogoods for COPs with more varying objectives and constraints, and the generated

nogoods are effective in pruning the search space and reducing the time for problem-

solving.
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Chapter 7

Strength of Dominance Breaking

Nogoods

In this chapter, we study the logical strength of the generated dominance breaking nogoods.

In general, we can always generate dominance breaking nogoods that are stronger than

manually derived dominance breaking constraints if the length of nogoods is sufficiently

large. If we set the scope of θ and θ′ to X, then the generated nogood constraints eliminate

all suboptimal full assignments in a COP.

We are interested in the relative strength of generated nogoods with a limited length

compared with manual dominance breaking constraints given in the literature. We say that

a constraint c1 is logically stronger than c2 if c1 implies c2, and they are logically equivalent if

they imply each other. Similarly, a set of constraints C1 is logically stronger than another set

of constraints C2 if the conjunction of C1 implies the conjunction of C2, and the conjunctions

are logically equivalent if they imply each other. We show in various problems that the set of

generated nogoods of a certain length are logically equivalent or even stronger than manual

dominance breaking constraints given in the literature.
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7.1 0-1 Knapsack Problems

Recall from the last section that the 0-1 knapsack problem is a problem with a linear objective

and a linear inequality constraint. We use one variable xi ∈ {0, 1} for each item i to indicate

whether the item is selected or not. The problem model is as follows:

maximize
n

∑
i=1

pixi (7.1a)

subject to
n

∑
i=1

wixi ≤W (7.1b)

The parameters pi and wi are the profit and the weight of item i, and W is the knapsack

capacity. Chu and Stuckey [24] propose the following dominance breaking constraints.

Definition 12. [24] The set of manual dominance breaking constraints for the 0-1 knapsack problem

are xi ≤ xj for all i, j ∈ {1, . . . , n} when either

1. pi < pj ∧ wi ≥ wj,

2. pi = pj ∧ wi > wj, or

3. pi = pj ∧ wi = wj ∧ i < j,

When the length l of nogoods is set to 2, our method can generate a set of dominance

breaking nogoods that is equivalent to the set of manual dominance breaking constraints in

Definition 12.

Theorem 36. When the nogood length is l = 2, the set of automatically generated dominance

breaking nogoods is logically equivalent to the set of manual dominance breaking constraints in

Definition 12.

Proof. Suppose the solution of the generation CSP is a pair (θ, θ′) of partial assignments

over the same scope S = {xi, xj} where i < j. By Theorems 5, 9 and 16, (θ, θ′) must satisfy:

• betterment: pivi + pjvj ≥ piv′i + pjv′j

• implied satisfaction for (7.1b): wivi + wjvj ≤ wiv′i + wjv′j
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• compatibility: (−(pivi + pjvj), wivi +wjvj, vi, vj) <lex (−(piv′i + pjv′j), wiv′i +wjv′j, v′i, v′j)

where vi = θ[xi], vj = θ[xj], v′i = θ′[xi] and v′j = θ′[xj]. Since D(xi) = D(xj) = {0, 1}, we can

exhaust all value combinations and find that there are only two possible valid solutions for

the generation CSP: either (vi, vj, v′i, v′j) = (1, 0, 0, 1) or (vi, vj, v′i, v′j) = (0, 1, 1, 0). Therefore,

we have a set of nogood constraints ¬θ′ of the forms:

• xi 6= 0∨ xj 6= 1 when pi ≥ pj ∧ wi ≤ wj ∧ (−pi, wi) <lex (−pj, wj)},

• xi 6= 1∨ xj 6= 0 when pi ≤ pj ∧ wi ≥ wj ∧ (−pj, wj) <lex (−pi, wi), and

• xi 6= 1∨ xj 6= 0 when pi = pj ∧ wi = wj.

Since (xi 6= 0∨ xj 6= 1) ≡ (xi ≥ xj) and (xi 6= 1∨ xj 6= 0) ≡ (xi ≤ xj), the set of constraints

in Definition 12 is equivalent to the set of generated nogoods.

It is easy to see that the set of generated dominance breaking nogoods becomes even

stronger when we increment the maximum nogood length L.

Corollary 6. When the maximum nogood length is L > 2, the set of automatically generated

dominance breaking nogoods is logically stronger than the set of manual dominance breaking

constraints in Definition 12.

7.2 Disjunctively Constrained Knapsack Problems

The disjunctively constrained knapsack problem [130] is an extension of the knapsack

problem with additional constraints that some item pairs cannot be selected simultaneously.

The conflicts among items can be represented by an undirected graph G = (N, E) where

N = {1, . . . , n} and (i, j) ∈ E if item i and j are in conflict with each other. Let Γ(i) = {j |

(i, j) ∈ E} be the neighborhood of item i in G, and the extra constraints can be modeled by

Boolean disjunction constraints.

(xi = 0) ∨ (xj = 0), ∀j ∈ Γ(i), i ∈ {1, . . . , n} (7.2)
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The set of dominance breaking constraints is similar to that for the 0-1 knapsack problem,

except that a precondition is required to ensure swapping the value of xi and xj does not

violate the Boolean disjunction constraints.

Definition 13. The set of manual dominance breaking constraints for the disjunctively constrained

knapsack problem are (
∧

k∈Γ(j)(xk = 0))→ (xi ≤ xj) for all i, j ∈ {1, . . . , n} when either

1. pi < pj ∧ wi ≥ wj,

2. pi = pj ∧ wi > wj, or

3. pi = pj ∧ wi = wj ∧ i < j,

The number of variables involved in the manual dominance breaking constraint depends

on the size of Γ(j). The following theorem states that the set of automatically generated

dominance breaking nogoods of length l = maxj∈N(|Γ(j)|) + 2 is logically stronger than

manual dominance breaking constraints.

Theorem 37. When the nogood length is l = maxj∈N(|Γ(j)|)+ 2, the set of automatically generated

dominance breaking nogoods is logically stronger than the set of manual dominance breaking

constraints in Definition 13.

Proof. It suffices to show that there is a logically equivalent dominance breaking nogood

of length l = |Γ(j)|+ 2 for every constraint in Definition 13. When i ∈ Γ(j), the constraint

(
∧

k∈Γ(j)(xk = 0)) → (xi ≤ xj) becomes a tautology. Therefore, we only consider the case

when i /∈ Γ(j). For the ease of presentation, we assume that |Γ(j)| = 1, and the proof can be

generalized trivially.

When l = 3, consider a pair (θ, θ′) of partial assignments over the scope S = {xi, xj, xk}

where i < j, k ∈ Γ(j) and (θ, θ′) is a solution of the generation CSP with length l = 3. The

pair (θ, θ′) must satisfy sufficient conditions from Theorems 5, 9 and 16, which are similar

to those in the proof of Theorem 36. In addition, (θ, θ′) must also satisfy

((θ[xj] = 0) ∨ (θ[xk] = 0))⇒ ((θ′[xj] = 0) ∨ (θ′[xk] = 0)) (7.3)
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by Theorem 11. One possible solution is to have θ[xk] = θ′[xk] = 0. Following the same

reasoning as Theorem 36, we have a set of nogoods of the forms:

• xi 6= 0∨ xj 6= 1∨ xk 6= 0 when pi ≥ pj ∧ wi ≤ wj ∧ (−pi, wi) <lex (−pj, wj),

• xi 6= 1∨ xj 6= 0∨ xk 6= 0 when pi = pj ∧ wi = wj, and

• xi 6= 1∨ xj 6= 0∨ xk 6= 0 when pi ≤ pj ∧ wi ≥ wj ∧ (−pj, wj) <lex (−pi, wi).

Since we have (xi 6= 0 ∨ xj 6= 1 ∨ xk 6= 0) ≡ ((xk = 0) → (xi ≥ xj)) and (xi 6= 1 ∨ xj 6=

0 ∨ xk 6= 0) ≡ ((xk = 0) → (xi ≤ xj)), there is a logically equivalent dominance breaking

nogood for each dominance breaking constraint in Definition 13.

Note that the conflict constraints can also be modeled by linear inequality constraints,

but the corresponding generation CSP will have fewer solutions. For instance, if we replace

(7.2) with xj + xk ≤ 1, there is a constraint θ[xi] + θ[xk] ≤ θ′[xi] + θ′[xk] in the generation

CSP by Theorem 9, and it is a stronger condition than (7.3). Following the same reasoning

as the proof of Theorem 36, we will find the generation CSP becomes insatisfiable, and thus

there are no dominance breaking nogoods with length l = 3.

7.3 Capacitated Concert Hall Scheduling Problems

The Capacitated Concert Hall Scheduling Problems [45] is to schedule a set A of applications

to a set H of concert halls. Each application i ∈ A has a period [si, ei], a profit pi and a

requirement ri, and each concert hall h ∈ H has a capacity ch. An application i can be

scheduled in a hall h, if the requirement ri ≤ ch, and application i and j cannot be in the

same hall if their period are overlapping, i.e. [si, ei] ∩ [sj, ej] 6= ∅.

Let Hi = {h ∈ H | ch ≥ ri} be the set of feasible halls for application i. We use one

variable xi ∈ Hi ∪ {0} for each application i ∈ A. Application i is scheduled in hall h

when xi = h, while it is not scheduled when xi = 0. The non-overlapping requirement

can be modeled as alldifferent_except_0 constraints, where the set of applications that are

overlapping at any time point should not be scheduled in the same hall. It is sufficient
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to consider the start time of all applications. Let Γ(i) = {j | sj ≤ si ≤ ej} be the set of

applications whose periods are overlapping with the start time of application i ∈ A. The

problem model can be modelled as follows:

maximize ∑
i∈A

pi1>0(xi) (7.4a)

subject to alldifferent_except_0({xj | j ∈ Γ(i)}), ∀i ∈ A (7.4b)

xi ∈ Hi ∪ {0}, ∀i ∈ A (7.4c)

where 1>0 : R 7→ {0, 1} is an indicator function returning 1 when xi > 0. The objective

is to maximize the total profit of all scheduled concerts. Gange and Stuckey [45] propose

constraints to prefer shorter, more profitable concerts.

Definition 14. [45] The set of manual dominance breaking constraints for capacitated concert hall

scheduling problem are xi > 0→ xj > 0 for all i, j ∈ A where either

1. [sj, ej] ⊆ [si, ei] ∧ rj ≤ ri ∧ pj > pi, or

2. [sj, ej] ⊆ [si, ei] ∧ rj ≤ ri ∧ pi = pj ∧ i < j

The following theorem shows the relations between the set of automatically generated

dominance breaking nogoods and the set of manual dominance breaking constraints when

the length of nogoods is set to l = 2.

Theorem 38. When the nogood length is l = 2, the set of automatically generated dominance

breaking nogoods is logically stronger than the set of manual dominance breaking constraints in

Definition 14.

Proof. Note that each constraint in Definition 14 is equivalent to the conjunction of several

nogood constraints:

xi > 0→ xj > 0

⇔¬(xi > 0) ∨ (xj > 0)

⇔xi = 0∨ xj 6= 0

⇔
∧

h∈Hi

(xi 6= h ∨ xj 6= 0)

(7.5)

114



It suffices to show that the set of nogoods in (7.5) is logically equivalent to a subset of

generated dominance breaking nogoods when l = 2.

Consider a pair (θ, θ′) of partial assignments over a scope S = {xi, xj}, where i < j,

θ[xi] = θ′[xj] = 0 and θ[xj] = θ′[xi] = h ∈ Hj. The pair (θ, θ′) is a solution of the generation

CSP if it satisfies sufficient conditions from Theorems 5 and 16, and Corollary 2:

• betterment: pi1>0(0) + pj1>0(h) = pj ≥ pi = pi1>0(h) + pj1>0(0)

• implied satisfaction for (7.4b) and (7.4c)

– ∀k ∈ A, {θ[xj] | j ∈ Γ(k)} ⊆ {θ′[xi] | i ∈ Γ(k)},

– ∀k ∈ A, θ[xj] ∈ Hj ∪ {0}

• compatibility: (−pj, 0, h) <lex (−pi, h, 0)

By definition of Γ(k), if [sj, ej] ⊆ [si, ei], then j ∈ Γ(k) implies that i ∈ Γ(k), and the implied

satisfaction for (7.4b) must hold. Also, by definition of Hi and Hj, if rj ≤ ri, then Hi ⊆ Hj,

and the implied satisfaction for (7.4c) must hold when θ[xj] = θ′[xi] = h ∈ Hi. Therefore,

when [sj, ej] ⊆ [si, ei], pj ≥ pi, h ∈ Hi, and (−pj, 0, h) <lex (−pi, h, 0), (θ, θ′) is a solution of

the generation CSP and there is a dominance breaking nogoods ¬θ′ ≡ (xi 6= h ∨ xj 6= 0).

The set of all generated nogoods is the same as that in (7.5) and is logically equivalent to

the set of manual dominance breaking constraints in Definition 14.

Again, it is easy to see that the set of generated dominance breaking nogoods becomes

even stronger when we increment the maximum nogood length L.

Corollary 7. When the maximum nogood length is L > 2, the set of automatically generated

dominance breaking nogoods is logically stronger than the set of manual dominance breaking

constraints in Definition 14.

7.4 Weighted Maximum Cut Problems

Given a weighted undirected graph G = (V, E), the maximum cut problem is to find a

partition (V1, V2) of V to maximize the total weights of crossing edges. We use one binary
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variable xi ∈ {0, 1} for each vertex i ∈ V to indicate whether i is in V1. The problem model

is as follows:
maximize ∑

(i,j)∈E
w(i,j)xi ⊕ xj

subject to xi ∈ {0, 1}, ∀i ∈ V

where xi ⊕ xj is the exclusive disjunction which is 1 only when xi 6= xj. Note that the objective

function is equivalent to the cut function g(V1) = g({i | xi = 1}), which is a submodular

set function. Inspired by the local search algorithm [117], we define the following manual

dominance breaking constraints.

Definition 15. The set of manual dominance breaking constraints for the weighted maximum

cut problems are xi 6= 1 ∨ xj 6= 1 for all pairs of nodes {i, j} when either g({i}) ≥ g({i, j}) or

g({j}) ≥ g({i, j}).

When the length l of generated nogoods is 2, the set of generated dominance breaking

nogoods is equivalent to the set of constraints in Definition 15.

Theorem 39. The set of automatically generated dominance breaking nogoods of length l = 2 is

logically equivalent to the set of manual dominance breaking constraints in Definition 12.

Proof. By Corollary 7 and Theorem 16, a pair (θ, θ′) of partial assignments over the scope

S = {xi, xj} is a solution of the generation CSP for l = 2 if:

• betterment: g(V(θ)) ≥ g(V(θ′)) ∧V(θ) ⊆ V(θ′)

• compatibility: (−g(V(θ)), θ[xi], θ[xj]) <lex (−g(V(θ′), θ′[xi], θ′[xj])

where V(θ) = {k | xk ∈ S ∧ θ[xk] = 1} and V(θ′) = {k | xk ∈ S ∧ θ′[xk] = 1}. Since

D(xi) = D(xj) = {0, 1}, we exhaust all value combinations and find that there are only two

possible valid solutions:

• θ = {xi = 1, xj = 0} and θ′ = {xi = 1, xj = 1}, or

• θ = {xi = 0, xj = 1} and θ′ = {xi = 1, xj = 1}.
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Therefore, there is a generated nogood constraint ¬θ′ ≡ (xi 6= 1 ∨ xj 6= 1) when either

g({i}) ≥ g({i, j}) or g({j}) ≥ g({i, j}), and the set of all generated nogoods of length 2 is

equivalent to the set of constraints in Definition 15.

Similar to those for the 0-1 knapsack problems, the set of generated nogoods becomes

even stronger when we increment the maximum nogood length L.

Corollary 8. When the maximum nogood length is L > 2, the set of automatically generated

dominance breaking nogoods is logically stronger than the set of manual dominance breaking

constraints in Definition 15.

In general, we can observe that in a weighted undirected graph G = (V, E), if moving a

set of vertices out of a set V(θ) for a partial assignments will increase the cut value, then θ

cannot be extended to an optimal solution of the maximum cut problem on G.

7.5 Combinatorial Auction Problems

The combinatorial auction problem is to select a subset of n bidders for m items, where each

bidder Bi is a subset of {1, . . . , m} and is associated with a profit pi. The restriction is that

each item can appear at most once in the selected bidders, and the aim is to maximize the

total values. We use one binary variable xi ∈ {0, 1} for each bidder to indicate whether the

bidder i is selected or not and let Γ(k) = {i | k ∈ Bi} be the set of bidders that contain item

k. The problem model is as follows:

maximize
n

∑
i=1

pixi (7.6a)

subject to
n

∑
i∈Γ(k)

xi ≤ 1, ∀k ∈ {1, . . . , m} (7.6b)

Following the method by Chu and Stuckey [24], we consider dominance breaking constraint

derived from mappings that swap the values of variables xi and xj.

Definition 16. The set of manual dominance breaking constraints for the combinatorial auction

problems are xi ≤ xj for all i, j ∈ {1, . . . , n} when Bi ⊇ Bj and either (1) pi < pj, or (2)
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pi = pj ∧ i < j.

Theorem 40. The set of automatically generated dominance breaking nogoods of length l = 2 is

logically stronger to the set of manual dominance breaking constraints in Definition 16.

Proof. Suppose the solution of the generation CSP is a pair (θ, θ′) of partial assignments

over the same scope S = {xi, xj} where i < j. If Bi ⊇ Bj, then j ∈ Γ(k) implies that i ∈ Γ(k).

By Theorems 5, 9 and 16, (θ, θ′) is a solution of the generation CSP if it satisfies:

• betterment: pivi + pjvj ≥ piv′i + pjv′j

• implied satisfaction for (7.6b):

– ∀k ∈ {1, . . . , m}, vj ≤ v′j when i ∈ Γ(k) and j /∈ Γ(k), or

– ∀k ∈ {1, . . . , m}, vi + vj ≤ v′i + v′j when i, j ∈ Γ(k)

• compatibility: (−(pivi + pjvj), vi, vj) <lex (−(piv′i + pjv′j), v′i, v′j)

where vi = θ[xi], vj = θ[vj], v′i = θ′[xi] and v′j = θ′[xj]. We can exhaust all value combinations

and find that there are only two possible valid solutions of the generation CSP: either

(vi, vj, v′i, v′j) = (1, 0, 0, 1) or (vi, vj, v′i, v′j) = (0, 1, 1, 0). The set of generated nogoods consists

of:

• xi 6= 0∨ xj 6= 1 when pi > pj, and

• xi 6= 1∨ xj 6= 0 when pi ≤ pj,

which is equivalent to the set of constraints in Definition 16.

7.6 Set Covering Problems

The set covering problem [59] is to select a collection of subsets whose union equals to the

universe {1, . . . , m}, and it is a dual problem of the combinatorial auction problem. In this

problem, each subset Si is associated with a cost ci, and the objective is to minimize the total

cost of the selected subsets. We use one binary variable xi ∈ {0, 1} for each subset, and let
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Γ(k) = {i | k ∈ Bi} be the collection of subsets that contain element k. The problem model

is as follows:

minimize
n

∑
i=1

cixi (7.7a)

subject to
n

∑
i∈Γ(k)

xi ≥ 1, ∀k ∈ {1, . . . , m} (7.7b)

Similar to Definition 16, we can derive the dominance breaking constraints by the method

by Chu and Stuckey [24].

Definition 17. The set of manual dominance breaking constraints for the set covering problems are

xi ≤ xj for all i, j ∈ {1, . . . , n} when Bi ⊆ Bj and either (1) ci > cj, or (2) ci = cj ∧ i < j.

We can show that the generated nogoods constraints of length 2 is logically stronger to

the manually defined dominance breaking constraints.

Theorem 41. The set of automatically generated dominance breaking nogoods of length l = 2 is

logically stronger to the set of manual dominance breaking constraints in Definition 17.

The proof is similar to that of Theorem 40.

7.7 PC Board Problems

The PC Board Problems [91] is to assign components of various types to |M| machines with

n slots on each machine. There are nt components of type t ∈ T, and ∑t∈T nt = |M|n. At

most one component of type t can be assigned to the same machine. If a component of

type t is assigned to a machine m ∈ M, then it obtains the profit pmt. The incompatibility

constraint requires that two components of conflicting types cannot be assigned to the same

machine. Similar to the disjunctively constrained knapsack problem, the conflicts can be

represented by a graph G = (T, E) where (t, t′) ∈ E if components of type t and type t′ are

in conflict with each other.

To model the problem, we use one binary variable xmt ∈ {0, 1} for each machine m ∈ M

and each component type t ∈ T, indicating whether there is a component of type t on
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machine m. The model is as follows:

maximize ∑
m∈M,t∈T

xmt pmt (7.8a)

subject to (xmt = 0) ∨ (xmt′ = 0), ∀m ∈ M, t ∈ T, t′ ∈ Γ(t) (7.8b)

∑
m∈M

xmt = nt, ∀t ∈ T (7.8c)

∑
t∈T

xmt = n, ∀m ∈ M (7.8d)

where Γ(t) = {t′ | (t, t′) ∈ E} is the neighborhood of t in the conflict graph G.

Chu and Stuckey [24] consider swapping two components of different types on two

different machines such that either the utility increases or remains the same after the

swapping. If these two component can be swapped without violating the incompatibility

constraints on both machines, then we can post dominance breaking constraints to enforce

the swapping.

Definition 18. [24] The set of manual dominance breaking constraints for the PC board problems

are
(

∧
t̄∈Γ(t)\{t′}

(xmt̄ = 0) ∧
∧

t̄∈Γ(t′)\{t}
(xm′ t̄ = 0))

→(xmt 6= 0∨ xmt′ 6= 1∨ xm′t 6= 1∨ xm′t′ 6= 0)

(7.9)

for all machines m, m′ ∈ M and types t, t′ ∈ T where either

1. pmt + pm′t′ > pm′t + pmt′ , or

2. pmt + pm′t′ = pm′t + pmt′ and (m, t) <lex (m′, t′)

The precondition in the constraint is to ensure that no components in conflict with t and t′ are

assigned to machine m and m′ respectively after swapping.

We first consider a simplified case where no pairs of component types are conflicting

and show that the set of generated nogoods is stronger when l = 4.

Lemma 2. Suppose ∀t ∈ T, Γ(t) = ∅. The set of automatically generated dominance breaking

nogoods is logically equivalent to the set of manual dominance breaking constraints in Definition 18
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when the length of nogood is l = 4.

Proof. Without loss of generality, we assume that m < m′. Since ∀t ∈ T, Γ(t) = ∅, con-

straint (7.9) becomes (xmt 6= 0 ∨ xmt′ 6= 1 ∨ xm′t 6= 1 ∨ xm′t′ 6= 0), which is in the form

of a nogood constraint. We consider a pair (θ, θ′) of partial assignments over the scope

S = {xmt, xmt′ , xm′t, xm′t′}. The variables in θ and θ′ only involve in four constraints: (1)

∑m∈M xmt = nt for component type t and t′, and (2) ∑t∈T xmt = n for machine m and m′. By

Theorems 5, 9 and 16, the generation CSP requires:

• betterment: ∑xij∈S θ[xij]pij ≥ ∑xij∈S θ′[xij]pij

• implied satisfaction for (7.8c):

– θ[xmt] + θ[xm′t] = θ′[xmt] + θ′[xm′t], and

– θ[xmt′ ] + θ[xm′t′ ] = θ′[xmt′ ] + θ′[xm′t′ ],

• implied satisfaction for (7.8d):

– θ[xmt] + θ[xmt′ ] = θ′[xm′t] + θ′[xm′t′ ], and

– θ[xmt] + θ[xmt′ ] = θ′[xm′t] + θ′[xm′t′ ]

• compatibility: (−∑xij∈S θ[xij]pij, θ) <lex (−∑xij∈S θ′[xij]pij, θ′)

When we have
θ[xmt] = 1, θ[xmt′ ] = 0, θ[xm′t] = 0, θ[xm′t′ ] = 1,

θ′[xmt] = 0, θ′[xmt′ ] = 1, θ′[xm′t] = 1, θ′[xm′t′ ] = 0,

the pair (θ, θ′) satisfies all constraints in the generation CSP under the conditions in Defini-

tion 18. Therefore, the set of generated dominance breaking nogoods is logically equivalent

to the set of constraints in Definition 18.

When there are conflicting components, manual dominance breaking constraints will

have the precondition that
∧

t̄∈Γ(t)(xmt̄ = 0) and
∧

t̄∈Γ(t′)(xm′ t̄ = 0), and we show that the

manual dominance breaking constraint is equivalent to a generated dominance breaking

nogoods of length at most l = |Γ(t)|+ |Γ(t′)|+ 4.
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Theorem 42. Each manual dominance breaking constraint in Definition 18 is equivalent to a

generated dominance breaking nogood of length l = |Γ(t)|+ |Γ(t′)|+ 4.

Proof. Without loss of generality, we assume that Γ(t) = {k} and Γ(t′) = {k′}. Con-

straint (7.9) is equivalent to a nogood constraint

(xmk 6= 0∨ xm′k′ 6= 0∨ xmt 6= 0∨ xmt′ 6= 1∨ xm′t 6= 1∨ xm′t′ 6= 0) (7.10)

Similar to Lemma 2, we consider a pair (θ, θ′) of partial assignments such that

θ[xmk] = 0, θ[xm′k′ ] = 0, θ[xmt] = 1, θ[xmt′ ] = 0, θ[xm′t] = 0, θ[xm′t′ ] = 1,

θ′[xmk] = 0, θ′[xm′k′ ] = 0, θ′[xmt] = 0, θ′[xmt′ ] = 1, θ′[xm′t] = 1, θ′[xm′t′ ] = 0,

Since θ and θ′ have the same values for xmk and xm′k′ , they fulfill sufficient conditions from

Theorems 5, 9 and 16 by similar reasoning as that in Lemma 2. The additional constraints are

(7.8b) for type k and k′. By Theorem 11, it is trivial to verify that the sufficient conditions for

implied satisfaction are satisfied since θ[xmk] = θ[xm′k′ ] = θ′[xmk] = θ′[xm′k′ ] = 0. Therefore,

the pair is a solution the generation CSP, and ¬θ′ is equivalent to constraint (7.10).

Since there is one generated dominance breaking nogoods of length l = |Γ(t)|+ |Γ(t′)|+

4 for each constraint in Definition 18, the set of all nogoods must be stronger than the set of

manual dominance breaking constraints.

Corollary 9. When the maximum nogood length is L = |Γ(t)|+ |Γ(t′)|+ 4, the set of automatically

generated dominance breaking nogoods is logically stronger than the set of manual dominance breaking

constraints in Definition 18.

7.8 Concluding Remarks

In this chapter, we provide several case studies to compare the strength of manually

identified dominance breaking constraints and automatically generated nogoods by the

method of automatic dominance breaking. The results show that generated nogoods are

logically equivalent to or even stronger than manual constraints, which indicates that the
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method of automatic dominance breaking can reveal dominance breaking constraints in

the literature and even identify more opportunities to exploit dominance relations. The

theoretical insights also support the performance gains demonstrated by the experimental

results in Chapters 4 to 6.
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Chapter 8

Conclusion and Future Works

This thesis studies the automation of identification and exploitation of dominance relations

in constraint optimization problems. The contributions are threefold based on our three

published papers [85, 86, 87]. First, we propose the framework of automatic dominance

breaking which focuses on generating nogood constraints for dominance breaking. The

generation of nogoods is formulated mechanically as constraint satisfaction, and therefore

dominance breaking is automated for a class of optimization problems that consist of

efficiently checkable objectives and constraints. Second, we propose two theoretical and

practical techniques to relax the restriction of efficiently checkable constraints and improve

the efficiency of nogood generation. The proposals enable the method to be applied to more

benchmark problems that cannot be handled by the original method. Finally, we further

enlarge the class of problems with nested function calls, which are common in a high-level

modeling language in constraint programming. We identify a set of elementary functional

constraints and their useful properties such as monotonicity, associativity, commutativity

and submodularity, and the construction of nogood generation problems is formulated as

an automated term rewriting system. Both theoretical case studies and experimental results

on benchmark problems demonstrate the ability of our proposed methods in discovering

opportunities to exploit dominance relations and reducing the search space substantially for

solving constraint optimization problems.
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There are several future research directions. While nogood constraints are elementary

in constraint programming, the propagation of nogood may not be efficient. As shown in

Section 6.4, nogoods with relevant semantics can be combined into high-level constraints

that can be handled more efficiently. One direction of future work is to automate the process

of deriving high-level constraints by the techniques of automatic discovery of constraints

from example solutions [10, 12], where the generated nogoods can be used as examples

to learn and discover the desired constraints. The acquired constraints can help users

to further understand the target COP and improve the efficiency of the existing models.

Second, solving the generation CSP may sometimes incur a large overhead, and whether a

benchmark can benefit from our method cannot be guaranteed. Our method requires a full

constraint instance to synthesize generation CSPs, and the automatic detection of dominance

relations from constraint models alone is an interesting line of future work. Finally, the static

generation of dominance breaking nogoods may sometimes take too much time, and not all

nogoods are equally important in solving COPs. We expect dynamic detection of dominance

relations and its combination with dynamic dominance breaking methods [21, 24] will save

time for the overall solution process.
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Appendix A

Supplementary Experiment Results

A.1 Supplementary Results for Section 4.6

Table A.1 shows the average solving times and the average total times. An entry with

the symbol “–” indicates that the whole solving process time out after the 2-hour limit.

We highlight the fastest total time in bold for each configuration of different benchmark

problems.
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basic manual 2-dom 3-dom 4-dom
Problem Total Total Solving Total Solving Total Solving Total

Knapsack-100 – 1.33 1.12 1.74 0.02 28.09 0.08 1272.53
Knapsack-150 – 141.04 126.55 128.29 0.13 120.96 0.54 3600.54
Knapsack-200 – 1854.63 1671.77 1675.13 0.27 355.41 0.98 3600.98
Knapsack-250 – 6742.01 6548.54 6550.39 0.77 811.76 1.03 3601.03
Knapsack-300 – – – – 1.78 1597.57 1.84 3601.84

DisjKnapsack-100 – 2.91 7.21 7.69 0.02 23.56 0.04 991.07
DisjKnapsack-150 – 608.95 3363.07 3364.16 0.10 104.25 0.28 3600.28
DisjKnapsack-200 – 5971.33 – – 2.83 336.32 0.97 3600.97
DisjKnapsack-250 – – – – 41.38 850.16 3.16 3603.16
DisjKnapsack-300 – – – – 481.75 1841.92 14.45 3614.45
ConcertSched-25 37.72 19.08 4.05 4.33 3.20 5.33 2.87 37.49
ConcertSched-30 1166.07 756.93 228.94 229.00 122.65 124.61 136.04 197.55
ConcertSched-35 2645.94 1562.62 659.44 659.57 469.77 473.39 389.46 533.44
ConcertSched-40 5090.30 3206.15 1426.05 1426.17 1227.99 1232.44 1210.73 1440.56
ConcertSched-45 6248.07 5882.37 4146.53 4146.65 3316.66 3322.27 3187.46 3480.05

MaxCut-30 0.60 0.33 0.24 0.31 0.10 1.69 0.10 32.85
MaxCut-35 18.04 7.08 5.07 5.17 1.62 4.69 1.31 83.75
MaxCut-40 281.78 97.21 69.82 69.93 21.52 26.15 16.30 160.53
MaxCut-45 2548.66 1102.00 834.37 834.55 188.30 196.21 135.81 385.08
MaxCut-50 7160.27 6765.60 6703.06 6703.11 4671.98 4680.55 3595.26 3945.98

CombAuc-100 67.16 1.12 1.15 1.36 0.83 3.64 0.97 53.38
CombAuc-150 – 1129.94 1140.36 1140.90 433.17 443.22 390.35 600.61
CombAuc-200 – 4086.12 4107.03 4107.52 1847.73 1862.48 1524.59 1859.62
CombAuc-250 – 6473.76 6486.24 6486.44 3013.30 3032.58 2601.24 3093.52
CombAuc-300 – 6375.00 6381.24 6381.51 2033.18 2066.10 1709.82 2535.92
SetCover-100 76.68 1.63 1.39 1.46 0.01 4.82 0.01 113.96
SetCover-150 – 3620.55 2668.80 2669.02 0.65 27.95 0.02 571.01
SetCover-200 – 6991.12 6677.44 6677.53 39.63 116.89 0.06 2027.89
SetCover-250 – – 7168.51 7168.57 364.78 523.38 62.57 3347.68
SetCover-300 – – – – 783.23 1100.08 282.64 3882.64

Table A.1: Comparison of the solving time and the total time for basic, manual and L-dom
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A.2 Supplementary Results for Section 5.3

Table A.2 shows the time in seconds for generating dominance breaking nogoods of length

up to L. The columns tg and t∗g are the average time for generating nogoods without and

with common assignment elimination respectively. An entry with the symbol “–" indicates

that the generation timed out after the 1-hour limit. The percentage decrease of generation time

(%g) for each length L is computed as follows:

%g =
tg − t∗g

tg

The entry “N/A" means that the decrease of generation time is not available since tg or t∗g

exceeds the time limit of 1 hour.

Table A.3 shows the total time (generation time + solving time) in seconds for nogood

generation and problem solving of models augmented with generated nogoods of length

up to L. The time ts and t∗s are the average problem solving time without and with common

assignment elimination respectively. An entry with the symbol “–" indicates that the whole

solving process time out after the 2-hour limit. The percentage decrease of total time %t for

each length L is computed as follows:

%t =
(ts + tg)− (t∗s + t∗g)

ts + tg

The entry “N/A" means that the decrease of total time is not available since ts + tg or t∗s + t∗g

exceeds the time limit of 2 hours.
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Problem L = 2 L = 3 L = 4
tg t∗g %g tg t∗g %g tg t∗g %g

Knapsack-100 0.63 0.32 49.14% 28.08 6.83 75.67% 1272.45 103.59 91.86%
Knapsack-150 1.74 0.87 50.05% 120.83 31.39 74.02% – 949.11 N/A
Knapsack-200 3.53 1.58 55.38% 355.14 83.02 76.62% – 3494.99 N/A
Knapsack-250 5.64 2.41 57.27% 810.98 184.71 77.22% – – N/A
Knapsack-300 8.94 3.42 61.79% 1595.79 405.14 74.61% – – N/A
DisjKnapsack-100 0.48 0.20 59.25% 23.54 4.15 82.37% 991.03 59.20 94.03%
DisjKnapsack-150 1.47 0.59 59.69% 104.15 19.56 81.22% – 488.63 N/A
DisjKnapsack-200 3.02 0.92 69.54% 333.49 47.66 85.71% – 2377.76 N/A
DisjKnapsack-250 5.32 1.42 73.27% 808.78 125.44 84.49% – – N/A
DisjKnapsack-300 7.80 1.87 76.05% 1360.17 190.35 86.01% – – N/A
ConcertSched-25 0.33 0.18 45.16% 4.53 0.74 83.56% 239.73 6.92 97.11%
ConcertSched-30 0.09 0.04 59.71% 3.29 0.64 80.38% 296.20 9.77 96.70%
ConcertSched-35 0.16 0.06 62.50% 5.60 1.31 76.53% 724.18 24.06 96.68%
ConcertSched-40 0.11 0.09 19.95% 4.43 2.07 53.35% 540.29 53.98 90.01%
ConcertSched-45 0.25 0.09 63.56% 12.29 2.67 78.29% 1549.71 80.10 94.83%
MaxCut-30 0.10 0.09 5.02% 3.08 1.63 46.99% 82.44 29.82 63.83%
MaxCut-35 0.11 0.10 15.17% 4.63 2.38 48.62% 144.24 47.79 66.87%
MaxCut-40 0.18 0.14 26.50% 7.91 3.92 50.42% 249.27 90.77 63.59%
MaxCut-45 0.28 0.26 7.87% 14.83 6.64 55.20% 512.00 161.54 68.45%
MaxCut-50 0.40 0.38 4.82% 22.80 12.51 45.12% 1013.92 348.94 65.59%
CombAuc-100 0.21 0.04 80.87% 2.81 0.24 91.42% 52.41 1.26 97.59%
CombAuc-150 0.53 0.17 68.28% 10.04 1.17 88.33% 210.26 9.88 95.30%
CombAuc-200 0.84 0.31 62.98% 17.70 2.85 83.88% 377.02 31.26 91.71%
CombAuc-250 0.94 0.42 55.69% 25.91 5.26 79.71% 599.54 74.25 87.62%
CombAuc-300 1.22 0.61 49.69% 38.96 9.35 75.99% 978.75 149.02 84.77%
SetCover-100 0.07 0.06 13.36% 4.81 2.81 41.52% 113.95 55.49 51.30%
SetCover-150 0.26 0.19 24.74% 27.29 14.56 46.65% 570.99 267.33 53.18%
SetCover-200 0.54 0.56 -4.07% 77.25 52.03 32.65% 2027.83 805.53 60.28%
SetCover-250 1.19 1.11 6.77% 158.60 107.11 32.46% 3285.10 2258.66 31.25%
SetCover-300 2.34 2.17 7.18% 316.85 222.67 29.73% – 3486.21 N/A
KnapsackSide-100 0.44 0.24 46.74% 24.10 6.63 72.49% 1118.47 72.69 93.50%
KnapsackSide-150 1.15 0.74 35.88% 83.79 26.16 68.78% 3548.08 473.34 86.66%
KnapsackSide-200 3.44 1.83 46.65% 257.54 109.29 57.57% – 2575.88 N/A
KnapsackSide-250 8.97 5.59 37.68% 834.80 431.76 48.28% – – N/A
KnapsackSide-300 12.85 7.61 40.77% 1428.66 675.02 52.75% – – N/A

Problem L = 4 L = 5 L = 6
tg t∗g %g tg t∗g %g tg t∗g %g

PCBoard-8-6 16.35 2.62 83.98% 633.37 21.02 96.68% – 232.79 N/A
PCBoard-8-7 19.33 2.96 84.69% 833.90 28.92 96.53% – 406.03 N/A
PCBoard-9-6 26.66 3.55 86.70% 1116.76 35.18 96.85% – 487.97 N/A
PCBoard-9-7 27.83 3.66 86.83% 1258.38 35.60 97.17% – 465.96 N/A
PCBoard-10-6 49.09 9.14 81.39% 2008.01 84.88 95.77% – 1174.32 N/A

Table A.2: Comparison of the time for generating nogoods of different lengths
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Problem L = 2 L = 3 L = 4
tg + ts t∗g + t∗s %t tg + ts t∗g + t∗s %t tg + ts t∗g + t∗s %t

Knapsack-100 1.74 1.47 15.37% 28.09 6.85 75.62% 1272.53 103.66 91.85%
Knapsack-150 128.29 129.88 -1.24% 120.96 31.53 73.93% 3600.54 949.71 73.62%
Knapsack-200 1675.13 1636.61 2.30% 355.41 83.31 76.56% 3600.98 3496.71 2.90%
Knapsack-250 6550.39 6466.25 1.28% 811.76 185.39 77.16% 3601.03 3601.52 -0.01%
Knapsack-300 – – N/A 1597.57 406.94 74.53% 3601.84 3602.41 -0.02%
DisjKnapsack-100 7.69 6.77 11.89% 23.56 4.17 82.32% 991.07 59.25 94.02%
DisjKnapsack-150 3364.16 3252.09 3.33% 104.25 19.66 81.14% 3600.28 488.90 86.42%
DisjKnapsack-200 – – N/A 336.32 50.33 85.03% 3600.97 2378.98 33.93%
DisjKnapsack-250 – – N/A 850.16 169.53 80.06% 3603.16 3602.70 0.01%
DisjKnapsack-300 – – N/A 1841.92 647.65 64.84% 3614.45 3608.43 0.17%
ConcertSched-25 8.09 2.93 63.74% 10.12 2.87 71.66% 244.68 8.84 96.39%
ConcertSched-30 343.25 207.24 39.62% 210.50 138.65 34.13% 481.84 163.14 66.14%
ConcertSched-35 753.36 671.00 10.93% 547.82 395.61 27.78% 1273.04 372.36 70.75%
ConcertSched-40 1339.94 398.77 70.24% 1201.01 194.79 83.78% 1622.20 226.65 86.03%
ConcertSched-45 4023.27 2357.65 41.40% 3127.77 1051.99 66.37% 3847.61 1006.10 73.85%
MaxCut-30 0.31 0.32 -5.80% 1.69 0.90 46.95% 32.85 9.64 70.65%
MaxCut-35 5.17 5.03 2.81% 4.69 3.18 32.32% 83.75 31.18 62.77%
MaxCut-40 69.93 64.07 8.38% 26.15 21.70 16.99% 160.53 62.72 60.93%
MaxCut-45 834.55 699.00 16.24% 196.21 165.86 15.47% 385.08 204.86 46.80%
MaxCut-50 6703.11 6646.30 0.85% 4680.55 4209.72 10.06% 3945.98 3063.76 22.36%
CombAuc-100 1.36 1.24 9.04% 3.64 1.06 70.79% 53.38 2.06 96.15%
CombAuc-150 1140.90 1139.02 0.16% 443.22 435.33 1.78% 600.61 402.09 33.05%
CombAuc-200 4107.52 4109.78 -0.05% 1862.48 1853.41 0.49% 1859.62 1540.64 17.15%
CombAuc-250 6486.44 6473.60 0.20% 3032.58 3044.67 -0.40% 3093.52 2695.97 12.85%
CombAuc-300 6381.51 6379.09 0.04% 2066.10 2028.17 1.84% 2535.92 1831.95 27.76%
SetCover-100 1.46 1.45 0.81% 4.82 2.82 41.43% 113.96 55.50 51.30%
SetCover-150 2669.02 2682.66 -0.51% 27.95 15.23 45.51% 571.01 267.34 53.18%
SetCover-200 6677.53 6682.50 -0.07% 116.89 91.17 22.00% 2027.89 805.59 60.27%
SetCover-250 7168.57 7168.98 -0.01% 523.38 470.22 10.16% 3347.68 2258.87 32.52%
SetCover-300 – – N/A 1100.08 1004.03 8.73% 3882.64 3784.07 2.54%
KnapsackSide-100 8.10 5.94 26.62% 24.17 6.68 72.35% 1118.69 72.84 93.49%
KnapsackSide-150 885.57 733.12 17.21% 84.44 26.67 68.42% 3549.26 476.08 86.59%
KnapsackSide-200 6590.88 6515.05 1.15% 263.73 115.21 56.32% 3606.12 2607.48 27.69%
KnapsackSide-250 – – N/A 924.84 529.69 42.73% 3686.44 3688.16 -0.05%
KnapsackSide-300 – – N/A 1892.80 1031.61 45.50% 3953.78 3968.15 -0.36%

Problem L = 4 L = 5 L = 6
tg t∗g %g tg t∗g %g tg t∗g %g

PCBoard-8-6 – – N/A 1876.87 796.20 57.58% 3693.64 264.16 92.85%
PCBoard-8-7 – – N/A 2489.31 1340.27 46.16% 3849.23 508.01 86.80%
PCBoard-9-6 – – N/A 5215.44 4224.66 19.00% 4818.17 762.27 84.18%
PCBoard-9-7 – – N/A 5741.28 4790.46 16.56% 5711.61 1091.41 80.89%
PCBoard-10-6 – – N/A 6745.53 6605.94 2.07% 6813.18 3373.89 50.48%

Table A.3: Comparison of the total time using nogoods of different lengths
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A.3 Supplementary Results for Section 6.3

In this section, we give more experimental results for benchmarks in Section 6.3 using

different search configurations of the Chuffed solver [103]:

• user: using the user-specified search heuristic with lazy clause generation.

• no-lazy: using the user-specified search heuristic without lazy clause generation.

• vsids: using the variable state independent decaying sum heuristic with lazy clause

generation.

• togglee-vsids: alternating between the user-specified search heuristic and the variable

state independent decaying sum heuristic with lazy clause generation.

• free: using the variable state independent decaying sum search heuristic with lazy

clause generation and setting the restart base to be 100.

We use the same experiment protocol as that in Section 6.3, and all experiment are run

on Quad Xeon Platinum 8268 2.90GHz processors. Table A.4 to A.9 shows the geometric

mean of the problem solving time (Solving) and the total time (Total) in seconds for the

six benchmarks in Section 6.3, where “N/A” in the manual column indicates that there

no known dominance breaking constraints for the problem in the literature. For each

configuration, we highlight the smallest total time in bold.
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basic manual 2-dom 3-dom 4-dom
Configuration Instance Solving Solving Solving Total Solving Total Solving Total

user
n = 16 935.07 7200.00 891.83 892.55 458.48 484.66 564.79 2142.00
n = 18 6441.28 7200.00 6497.04 6497.44 4790.89 4830.68 3252.11 6897.56
n = 20 7199.83 7200.00 7199.38 7199.86 6825.22 6880.22 3578.53 7200.00

no-lazy
n = 16 649.63 7200.00 669.30 670.10 357.56 382.74 1671.54 3516.40
n = 18 6371.08 7200.00 6445.00 6445.44 5202.48 5235.85 3593.63 7200.00
n = 20 7199.82 7200.00 7199.37 7199.86 6818.12 6873.73 3578.56 7200.00

vsids
n = 16 213.00 6235.85 215.69 216.32 149.58 171.36 279.31 1785.49
n = 18 1628.28 7200.00 1751.22 1751.84 781.93 824.58 1562.94 5414.10
n = 20 5115.84 7200.00 5085.53 5086.09 2882.40 2950.20 3080.24 6757.51

togglee-vsids
n = 16 828.19 7200.00 883.59 884.27 451.94 479.89 565.45 2178.71
n = 18 6559.02 7200.00 6549.21 6549.59 4739.58 4781.30 3364.35 6974.51
n = 20 7199.83 7200.00 7199.41 7199.86 6865.76 6921.27 3589.38 7200.00

free
n = 16 218.93 5576.67 233.96 234.65 170.19 192.70 333.05 1877.21
n = 18 1710.41 7189.26 1769.89 1770.68 987.76 1029.23 1841.96 5708.09
n = 20 5181.36 7200.00 5139.87 5140.44 3880.31 3953.56 3215.67 6866.49

Table A.4: Comparison of the solving time and the total time for talent scheduling problem using different
search configurations

basic manual 2-dom 3-dom 4-dom
Configuration Instance Solving Solving Solving Total Solving Total Solving Total

user

n = 30 7199.81 N/A 2.63 19.11 3.99 1090.20 4.13 3608.11
n = 35 7199.86 N/A 11.07 36.88 17.36 2002.85 19.02 3629.15
n = 40 7199.78 N/A 50.54 109.38 63.75 3176.24 88.41 3742.91
n = 45 7199.84 N/A 100.46 154.63 94.43 3726.52 93.13 3722.41
n = 50 7199.82 N/A 798.79 917.73 285.22 3973.95 285.76 3966.55

no-lazy

n = 30 7199.80 N/A 37.75 61.03 62.68 1160.10 71.23 3703.43
n = 35 7199.81 N/A 233.86 266.78 376.43 2506.28 372.55 4130.84
n = 40 7199.79 N/A 1431.55 1491.62 1546.52 4896.36 1663.94 5530.35
n = 45 7199.78 N/A 3886.61 3934.79 2605.00 6264.49 2577.10 6284.13
n = 50 7199.76 N/A 6893.32 6937.53 3599.12 7200.00 3599.15 7200.00

vsids

n = 30 5334.24 N/A 4.41 21.81 7.21 1155.07 6.83 3610.98
n = 35 7199.85 N/A 19.52 44.85 28.75 2045.68 26.29 3634.98
n = 40 4310.27 N/A 69.46 114.28 119.52 3201.58 106.10 3765.55
n = 45 4382.41 N/A 101.26 145.25 138.96 3778.30 117.12 3742.90
n = 50 5923.10 N/A 391.77 465.01 167.17 3920.71 181.86 3928.86

togglee-vsids

n = 30 7199.77 N/A 2.67 18.67 4.38 1119.19 4.49 3608.16
n = 35 7199.86 N/A 10.90 37.70 19.92 2035.04 17.19 3628.30
n = 40 7199.79 N/A 52.67 108.06 77.77 3147.71 76.17 3723.55
n = 45 7199.74 N/A 94.43 154.10 99.39 3739.59 87.40 3714.64
n = 50 7199.86 N/A 840.22 944.31 321.98 4094.81 321.57 4088.68

free

n = 30 9.82 N/A 3.60 20.74 5.28 1053.72 5.33 3609.78
n = 35 32.93 N/A 14.18 39.68 19.81 1950.47 21.01 3629.98
n = 40 103.66 N/A 40.76 81.56 75.92 3245.02 78.29 3736.82
n = 45 435.33 N/A 75.51 118.10 102.17 3682.35 103.91 3731.84
n = 50 1993.63 N/A 321.88 400.81 165.21 3921.75 160.36 3911.45

Table A.5: Comparison of the solving time and the total time for warehouse location problem using different
search configurations
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basic manual 2-dom 3-dom 4-dom
Configuration Instance Solving Solving Solving Total Solving Total Solving Total

user

n = 8, m = 6 5036.37 N/A 2062.95 2073.58 1896.55 2440.60 1391.44 5854.01
n = 9, m = 6 7199.84 N/A 6453.90 6459.42 5635.64 6098.72 3204.56 6922.67
n = 10, m = 6 7157.01 N/A 6481.20 6490.04 6036.78 6675.89 3428.13 7074.74
n = 11, m = 6 7199.81 N/A 7188.13 7199.80 6099.53 7199.74 3599.32 7199.72
n = 12, m = 6 7199.78 N/A 7183.05 7199.79 5301.85 7199.68 3599.10 7199.61

no-lazy

n = 8, m = 6 7199.82 N/A 7197.30 7199.86 7045.64 7199.85 3602.53 7199.82
n = 9, m = 6 7199.85 N/A 7195.80 7199.85 6915.31 7199.82 3599.44 7199.80
n = 10, m = 6 7199.84 N/A 7193.31 7199.84 6644.24 7199.79 3599.45 7199.77
n = 11, m = 6 7199.82 N/A 7031.36 7199.81 6029.56 7199.75 3599.41 7199.75
n = 12, m = 6 7199.78 N/A 7184.50 7199.78 5378.66 7199.64 3599.22 7199.62

vsids

n = 8, m = 6 135.56 N/A 87.22 96.08 56.08 291.62 38.72 3755.85
n = 9, m = 6 761.65 N/A 120.94 130.38 157.06 585.86 122.91 3870.59
n = 10, m = 6 1857.40 N/A 379.31 405.39 404.68 1273.24 315.03 4300.88
n = 11, m = 6 1149.44 N/A 625.02 654.45 391.59 1767.92 271.81 4068.67
n = 12, m = 6 2447.37 N/A 986.78 1023.45 627.52 2881.53 886.01 4925.37

togglee-vsids

n = 8, m = 6 4844.41 N/A 2115.51 2127.64 1943.15 2534.05 1368.57 5794.80
n = 9, m = 6 7199.84 N/A 6372.30 6377.48 5689.76 6229.64 3242.20 6936.29
n = 10, m = 6 7134.29 N/A 6422.07 6430.94 6075.85 6679.76 3390.52 7041.33
n = 11, m = 6 7199.80 N/A 7188.54 7199.81 6094.21 7199.74 3599.33 7199.74
n = 12, m = 6 7199.73 N/A 7183.24 7199.79 5325.01 7199.65 3599.04 7199.57

free

n = 8, m = 6 27.62 N/A 19.44 23.80 17.27 181.55 18.02 3688.54
n = 9, m = 6 57.83 N/A 45.36 51.21 35.53 334.77 41.93 3646.76
n = 10, m = 6 133.26 N/A 105.43 114.55 83.70 668.82 98.32 3725.49
n = 11, m = 6 178.81 N/A 158.74 173.99 137.01 1267.50 133.93 3757.69
n = 12, m = 6 409.56 N/A 325.52 346.33 240.87 2144.72 352.19 4127.71

Table A.6: Comparison of the solving time and the total time for team assignment problem using different
search configurations
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basic manual 2-dom 3-dom 4-dom
Configuration Instance Solving Solving Solving Total Solving Total Solving Total

user

n = 50 372.59 N/A 66.03 66.30 15.09 20.81 0.34 98.40
n = 60 6675.37 N/A 3597.35 3597.96 881.18 900.23 68.17 330.18
n = 70 7199.94 N/A 7199.30 7199.93 6767.93 6788.30 1807.53 3197.45
n = 80 7199.91 N/A 7199.14 7199.92 7170.73 7199.94 5606.78 6523.35
n = 90 7199.94 N/A 7199.22 7199.96 7162.04 7199.94 5747.59 7199.85

no-lazy

n = 50 90.87 N/A 20.99 21.26 6.47 11.92 0.39 100.73
n = 60 3932.57 N/A 1236.64 1237.29 339.89 355.44 44.56 289.92
n = 70 7199.93 N/A 7150.91 7151.53 6148.51 6168.32 1224.82 2259.78
n = 80 7199.92 N/A 7199.13 7199.92 7171.27 7199.93 5441.46 6377.91
n = 90 7199.94 N/A 7199.18 7199.95 7162.04 7199.94 5761.14 7199.84

vsids

n = 50 0.96 N/A 0.54 0.79 0.25 5.07 0.03 95.53
n = 60 11.56 N/A 8.43 8.95 4.75 15.79 1.10 225.15
n = 70 133.46 N/A 104.05 104.93 65.77 90.07 15.59 479.36
n = 80 674.62 N/A 574.35 575.90 331.01 382.69 154.03 1075.20
n = 90 4717.68 N/A 4176.67 4177.77 2883.90 2953.84 1498.60 3317.09

toggle-vsids

n = 50 370.29 N/A 66.97 67.24 15.53 21.28 0.34 98.99
n = 60 6747.80 N/A 3500.11 3500.74 875.52 894.40 71.17 330.83
n = 70 7199.94 N/A 7199.33 7199.92 6696.77 6718.24 1799.34 3267.77
n = 80 7199.92 N/A 7199.11 7199.92 7169.04 7199.92 5540.80 6448.72
n = 90 7199.94 N/A 7199.23 7199.97 7162.17 7199.96 5770.51 7199.84

free

n = 50 0.92 N/A 0.54 0.82 0.27 5.07 0.05 100.87
n = 60 15.13 N/A 10.25 10.99 6.19 18.85 1.50 228.35
n = 70 342.49 N/A 219.80 220.98 112.85 143.11 23.27 486.84
n = 80 2253.30 N/A 2050.27 2113.73 1199.13 1403.51 324.92 1511.10
n = 90 6731.40 N/A 6758.17 6759.04 6284.80 6337.35 3575.08 5549.91

Table A.7: Comparison of the solving time and the total time for budgeted maximum coverage problem using
different search configurations
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basic manual 2-dom 3-dom 4-dom
Configuration Instance Solving Solving Solving Total Solving Total Solving Total

user

n = 50 6382.73 N/A 762.66 763.59 42.33 53.94 0.29 117.76
n = 60 7199.95 N/A 6756.30 6756.92 2952.19 2984.79 140.55 512.66
n = 70 7199.95 N/A 7034.95 7199.95 7020.08 7199.94 3904.17 4619.03
n = 80 7199.93 N/A 7199.36 7199.96 7176.20 7199.95 5927.26 6775.10
n = 90 7199.94 N/A 7199.26 7199.96 7162.93 7199.96 5855.01 7199.87

no-lazy

n = 50 3915.22 N/A 280.63 281.58 20.56 31.47 0.57 120.73
n = 60 6734.35 N/A 5927.93 5928.50 2052.56 2089.82 123.92 492.57
n = 70 7167.62 N/A 7035.01 7199.94 7020.43 7199.94 3252.33 4028.99
n = 80 7199.91 N/A 7199.35 7199.95 7176.74 7199.94 5709.80 6587.53
n = 90 7199.93 N/A 7199.23 7199.95 6895.58 7199.94 5706.54 7199.85

vsids

n = 50 46.15 N/A 10.78 11.70 1.79 9.15 0.07 117.23
n = 60 505.50 N/A 218.47 219.72 73.72 102.90 5.16 295.94
n = 70 1944.02 N/A 1370.20 1371.41 605.02 643.09 103.20 690.10
n = 80 3650.11 N/A 3297.45 3299.57 2263.63 2349.43 862.70 2192.06
n = 90 6886.50 N/A 6496.76 6752.52 5256.49 5302.60 3686.00 5385.49

toggle-vsids

n = 50 6312.22 N/A 757.51 758.33 41.06 52.78 0.28 117.01
n = 60 7199.92 N/A 6792.52 6793.15 3070.35 3107.39 142.81 498.08
n = 70 7199.95 N/A 7199.45 7199.95 7183.78 7199.94 3903.96 4546.32
n = 80 7199.93 N/A 7199.37 7199.97 7177.11 7199.96 5963.59 6772.70
n = 90 7199.94 N/A 7199.24 7199.96 7164.30 7199.98 5818.91 7199.86

free

n = 50 41.06 N/A 8.46 9.37 1.93 9.57 0.09 116.80
n = 60 579.55 N/A 214.66 216.93 70.85 108.05 6.01 303.22
n = 70 2803.96 N/A 2011.04 2013.11 931.87 998.03 141.45 770.46
n = 80 3526.94 N/A 3237.37 3244.23 2090.34 2248.97 1017.98 2907.76
n = 90 6377.07 N/A 6374.45 6375.25 6120.74 6174.15 4080.58 6171.80

Table A.8: Comparison of the solving time and the total time for partial set cover problem using different
search configurations
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basic manual 2-dom 3-dom 4-dom
Configuration Instance Solving Solving Solving Total Solving Total Solving Total

user

n = 50 46.60 N/A 38.02 38.58 28.51 37.82 26.04 173.76
n = 60 155.75 N/A 128.10 128.88 95.17 113.50 94.04 456.69
n = 70 483.11 N/A 362.14 363.09 269.30 298.84 270.85 982.32
n = 80 1279.87 N/A 952.47 953.75 738.70 783.84 716.57 2036.10
n = 90 3130.86 N/A 2246.19 2247.73 1617.90 1681.35 1580.59 3666.19

no-lazy

n = 50 5.79 N/A 4.69 5.23 3.93 12.09 3.64 147.99
n = 60 14.62 N/A 11.49 12.23 9.26 25.97 8.80 362.46
n = 70 37.54 N/A 28.08 29.02 21.57 48.46 20.30 725.67
n = 80 82.81 N/A 64.44 65.59 47.82 87.67 46.00 1261.13
n = 90 200.61 N/A 140.48 142.08 99.42 159.30 99.82 2126.43

vsids

n = 50 91.19 N/A 70.58 71.15 51.92 60.80 47.30 214.05
n = 60 404.03 N/A 288.14 288.92 198.41 217.28 191.70 563.36
n = 70 1062.26 N/A 761.33 762.25 603.28 631.94 544.35 1275.11
n = 80 2853.53 N/A 1961.21 1962.46 1589.95 1632.57 1662.12 2992.26
n = 90 6001.75 N/A 4414.18 4415.75 3831.28 3892.05 3545.42 5594.86

toggle-vsids

n = 50 46.00 N/A 38.19 38.77 29.34 38.13 28.89 193.64
n = 60 165.90 N/A 123.12 123.94 103.51 121.88 87.27 459.98
n = 70 513.96 N/A 350.68 351.63 277.43 307.00 268.64 962.74
n = 80 1378.79 N/A 981.29 982.57 751.04 795.22 766.97 2079.57
n = 90 3266.54 N/A 2090.35 2091.95 1652.25 1717.19 1650.13 3732.15

free

n = 50 97.38 N/A 75.37 75.93 54.98 64.23 47.88 197.89
n = 60 525.51 N/A 339.23 340.13 248.25 267.73 212.12 609.02
n = 70 2551.71 N/A 1266.53 1267.56 871.64 903.53 739.25 1482.12
n = 80 6809.42 N/A 5342.12 5343.51 3827.45 3880.80 3259.58 4653.61
n = 90 7199.71 N/A 7197.83 7199.77 6752.91 6813.06 4935.26 6997.26

Table A.9: Comparison of the solving time and the total time for sensor placement problem using different
search configurations

136



Appendix B

Publications

The results in this thesis have been included in the following publications:

• Conference Publications

– Jimmy H.M. Lee and Allen Z. Zhong. Automatic Dominance Breaking for

a Class of Constraint Optimization Problems, Proceedings of the 29th Inter-

national Joint Conference on Artificial Intelligence and the 17th Pacific Rim

International Conference on Artificial Intelligence (IJCAI-PRICAI 2020), pages

1192–1200, Yokohama, Japan, July, 2020.

The paper contributes to Chapter 4.

– Jimmy H.M. Lee and Allen Z. Zhong. Towards More Practical and Efficient

Automatic Dominance Breaking, Proceedings of the 35th AAAI Conference

on Artificial Intelligence (AAAI 2021), pages 3868–3876, a virtual conference,

February, 2021.

The paper contributes to Chapter 5.

– Jimmy H. M. Lee, Allen Z. Zhong. Exploiting Functional Constraints in Au-

tomatic Dominance Breaking for Constraint Optimization. Proceedings of the

28th International Conference on Principles and Practice of Constraint Program-

ming (CP 2022), pages 31:1–31:17, July, 2022.

The paper contributes to Chapter 6.
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• Under Review

– Jimmy H. M. Lee, Allen Z. Zhong. Towards Automatic Generation of Domi-

nance Breaking Nogoods for Constraint Optimization Problems. Submitted to

Artificial Intelligence.

The paper is related to Chapters 4, 5 and 7
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